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BayesianModeling of Tamoxifen Resistance in Breast Cancer Cells

Abstract

Breast cancer is a major health concern globally, with diagnoses and projected cases rising significantly, becom-
ing the most prevalent cancer among women and a leading cause of cancer-related deaths in the population.
Hormone therapies, particularly tamoxifen, are vital for treating estrogen receptor-positive (ER+) breast can-
cer, drastically improving survival rates by reducing recurrence and mortality. However, a significant challenge
remains, as a substantial portion of patients develop resistance to the drug (estimated to be between 30-50%)
within a critically long 5-year treatment window. To address this, our project proposes to analyze the complex
mechanisms driving tamoxifen resistance. Employing a Bayesianmodeling framework, and leveragingRNA se-
quencing data from cell-lines (in collaboration with the CIC bioGUNE research center) and publicly available
patient data, the study aims to unravel the intricacies of this resistance phenomenon. To this end, we have fur-
ther developed pyHaiCS, a Python library for Computational Statistics featuring a wide range of Hamiltonian
sampling algorithms, including single-chain andmulti-chain variants; a variety of numerical schemes for the in-
tegration of the simulatedHamiltonian dynamics, or a novel adaptive algorithm for the automatic tuning of the
parameters. Finally, the project aims to identify key genetic biomarkers linked to tamoxifen resistance and de-
velop robust, clinically applicable predictive models for patient prognosis under endocrine therapy. Ultimately,
identifying therapeutic targets, paving the way for personalized and more effective treatments to improve pa-
tient outcomes. In practice, themethodologies developed here are intended to be broadly generalizable to other
cancer types and drug resistance mechanisms.

Keywords
Bayesian Computational Statistics · Breast Cancer Research · Gene Expression Analysis ·

HamiltonianMonte Carlo (HMC) · Hormone Therapy · Tamoxifen Resistance
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1 Introduction

“‘Begin at the beginning,’ the King said, very gravely, ‘and go on till
you come to the end: then stop.’”

∼ Lewis Carroll, Alice inWonderland (1865) [1]

In the field of medical research, breast cancer stands out as a significant global health challenge, especially for
women, where it represents the most commonly diagnosed cancer and a leading cause of cancer-relatedmortal-
ity [2]. The complexity of breast cancer is accentuated by its heterogeneity, which manifests in various subtypes
characterized by distinct biological behaviors with diverse responses to treatment (as presented in Section 3.1).
Among these, estrogen receptor-positive (ER+) breast cancer accounts for approximately 70-80% of all cases,
making it the most prevalent subtype [3]. The estrogen receptor (ER) plays a pivotal role in the pathogenesis
of ER+ breast cancer, as its activation by estrogen promotes cell proliferation and tumor growth. Consequently,
endocrine therapy targeting the ER signaling pathway has become a cornerstone of treatment for this subtype
[4–7]. For several decades, tamoxifen, a selective estrogen receptor modulator (SERM), has become the stan-
dard therapy for ER+ breast cancer. By binding to estrogen receptors, tamoxifen acts as an antagonist in breast
tissue, effectively blocking estrogen’s proliferative effects. This mechanism has led to significant improvements
in recurrence-free and overall survival rates for patients with ER+ breast cancer, reducing recurrence by ∼50%
and mortality by ∼30% after a standard 5-year treatment [8].

Introduction & ProjectMotivation

Despite the remarkable success of tamoxifen, a significant clinical challenge persists: between 30% and 50% of
patients with ER+ breast cancer will eventually develop resistance to this therapy, leading to disease recurrence
andmetastasis [9]. This phenomenon of resistance can be particularly insidious, where tumors initially respond
but eventually relapse and progress during or after treatment. Understanding the biological mechanisms that
drive tamoxifen resistance is therefore of paramount importance for improvingpatient outcomes,more sowhen
we consider that tamoxifen treatments may last as long as 5 years. It is thus crucial to identify patients at risk of
developing resistance early in their treatment course, as this could inform clinical decisions and guide the selec-
tion of alternative therapeutic strategies, hopefully paving the way for more personalized treatment approaches
in precision oncology [10].

Addressing this complex biological problem requires sophisticated analytical approaches capable of handling
high-dimensional genomic data extracted from cellular samples. Moreover, the challenge lies in the need to
identify relevant signatures of potential genetic biomarkers predictive of tamoxifen resistance. In this study,
we propose to leverage the power of Bayesian statistical methods to tackle this challenge, by combining RNA
sequencing data from both patients and lab-grown cell-lines. Unlike traditional frequentist methods, Bayesian
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inference naturally incorporates prior expert knowledge and provides a formal way to quantify uncertainty in
estimates and predictions. This ability to model uncertainty is crucial when dealing with noisy biological data
and patient heterogeneity. Moreover, to efficiently explore the complex posterior distributions arising from
high-dimensional genomic data, we employHamiltonian-inspiredmethods, such asHamiltonianMonteCarlo
(HMC) and its variants. Thesemethods leverage the principles of classical mechanics to navigate the parameter
spacemore effectively, enabling faster convergence andmore accurate sampling compared to traditionalMarkov-
ChainMonte Carlo (MCMC) approaches.

Thus, the overarching aim of this project is to develop and implement sophisticated Bayesian statistical mod-
els designed to integrate relevant sequencing data associated with tamoxifen response; to utilize these models to
identify potential signatures that are predictive of resistance; to rigorously evaluate the predictive accuracy and
robustness of the developed models using appropriate validation techniques; and finally, to explore the biolog-
ical implications (and limitations) of our findings, seeking to highlight key pathways or genes critically involved
in the resistance mechanism. Likewise, central to this work is the development of the open-source library py-
HaiCS, which facilitates the implementation of Hamiltonian-inspired sampling methods for computational
statistics. This library is designed to be user-friendly and accessible, allowing researchers to easily apply ad-
vanced sampling techniques to their own data. The library is built on top of the popular Python library JAX
(by Google) [11, 12], which provides efficient numerical computations, native support for hardware accelera-
tors (such as GPUs and TPUs), automatic differentiation, and ensures compatibility with existing Python data
analysis workflows.

General Structure

This thesis is organized to guide the reader through the research process, from the initial background and mo-
tivation to the final discussion and implications of our findings (see Figure 1.1). Each chapter is designed to
build upon the previous ones, providing a logical progression of ideas and concepts. First, Chapter 2 outlines
the specific objectives, scope, and limitations of the study, and the research questions we aim to address. This
is followed by Chapter 3, which seeks to provide a thorough introduction to the fundamentals of breast cancer
biology, the role of endocrine therapy with tamoxifen, and an overview of the basics of Bayesian statistical mod-
eling. This chapter also includes a section which hopefully serves as a standalone initiation to the theoretical
foundations behindHamiltonian-basedMonte Carlo samplingmethods, as well as a dedicated section (Section
3.4) that reviews related prior research in the field, providing a comprehensive literature overview.

Building on these foundations, Chapter 4 details the sequencing data used across this work, the specific pre-
processing steps applied, and the development of the integrated Bayesian models. Then, the pyHaiCS library
is introduced, including its design principles, key features, and examples of its usage. The chapter ends with a
description of the Bayesian Logistic Regression (BLR) method used across this study, as well as the other resis-
tance models developed. The results of these prognostic models are then presented in Chapter 5, along with
the evaluation metrics used to assess their performance and a model explainability analysis using SHAP values.
This chapter also includes a detailed analysis and external validation of the identifiedbiomarkers, including their
potential implications in underlying biological pathways and their relevance to tamoxifen resistance. Likewise,
this chapter finds the discussion and interpretation of these findings in the context of existing knowledge, and
critically evaluates the study’s limitations.

2
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Thesis Structure Overview

Ch 2: Objectives & Scope
Objectives, Scope, Limits

Ch 3: Background
Breast Cancer Research, Bayesian
Modeling, HMC, Related Work

Ch 4: Methods
Available Data, Pre-Processing,
Integration, pyHaiCS, Models

Ch 5: Results & Discussion
Evaluation, Explainability,

Potential Biomarkers, Enrich-
ment Analysis, Discussion

Ch 6: Project Management
Planning, Budgeting,
Ethics Considerations

Ch 7: Conclusions
Contributions, Significance,
Implications, Future Work

Figure 1.1: Overview of the Thesis Structure

From the perspective of project management, Chapter 6 outlines the planning, budgeting, and ethical con-
siderations associatedwith the project. It provides a comprehensive overviewof the project’s timeline, including
key milestones and tasks, as well as the human and technical resources and costs required to successfully com-
plete our investigation. This chapter also addresses ethical considerations related to data collection, analysis, and
interpretation, ensuring that our research adheres to established ethical guidelines and standards, as well as con-
siderations for data privacy and a gender perspective in such a sensitive field. Finally, Chapter 7 summarizes the
key contributions of this work, highlighting its significance in advancing our understanding of tamoxifen resis-
tance in breast cancer. The chapter also discusses the potential implications of the findings for clinical practice
and patient treatment, as well as future promising research directions in this area, including potential extensions
of the models developed or the integration of additional data.
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2 Objectives & Scope

“Not everything that counts can be counted, and not everything that
can be counted counts.”

∼Albert Einstein

In this chapter, we outline the objectives of the project, as well as the scope and limitations within which the
research is conducted. The objectives are divided into general and specific objectives, which will guide the de-
velopment and evaluation of the project through explicitly measurable goals. The general objectives provide a
broad overview of the intended outcomes, while the specific objectives break down these goals into more de-
tailed and actionable tasks. Additionally, the scope defines the boundaries and areas of focus of the project,
while the limitations acknowledge potential constraints set by the research design, methodology, or available
resources.

2.1 General Objectives

In terms of the general objectives of this project, our aim is twofold. First, we seek to identify potential genetic
biomarkers associated with the resistance of ER+ breast cancer cells to tamoxifen therapy, hopefully leading to
improved prognosticmodels for predicting treatment strategies and patient outcomes. Inmore practical terms,
we aim to develop a set of models that can accurately predict the likelihood of tamoxifen resistance in breast
cancer patients based on their genetic profiles. This will involve the integration of RNA sequencing data from
both patients and lab-grown cell-lines, the development of advanced Bayesian models, and to rigorously eval-
uate their performance using appropriate validation techniques. The resulting models should be interpretable
in their predictions, and the identified biomarkers should be biologically relevant, providing insights into the
underlying mechanisms of tamoxifen resistance. The ultimate goal is to provide clinicians with a reliable tool
for identifying patients at risk of developing resistance, enabling more personalized treatment strategies (e.g.,
through alternative therapies or treatments).

Second, due to the general scarcity of open-source libraries for Bayesian modeling in Python— and the lack
of user-friendly tools for implementing advanced sampling techniques — we aim to develop an open-source li-
brary for computational Bayesian statistics based on Hamiltonian-inspired Monte Carlo sampling methods:
pyHaiCS. This library will facilitate the implementation of advanced sampling techniques in Bayesian model-
ing, making themmore accessible to researchers in the field. The library will be designed to be user-friendly and
compatible with existing data analysis and Machine Learning workflows, allowing researchers to easily apply
advanced sampling techniques to their own data and research inquiries.

4
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Table 2.1: Specific Objectives for Biomarker Identification and Prognostic Modeling

ID Specific Objective Description

SO 1.1 Acquire and pre-process RNA-seq data fromMCF7 cell-lines (control vs. tamoxifen-resistant
replicates).

SO 1.2 Acquire and pre-process RNA-seq for ER+ tamoxifen-treated breast cancer patients from the
TCGA-BRCA cohort.

SO 1.3 Perform Differential Expression Analysis (DEA) independently on cell-line data and patient
data to identify genes significantly expressed in resistant phenotypes.

SO 1.4 Integrate cell-line and patient DEA results to establish a refined list of candidate biomarkers
exhibiting concordant expression changes across both data sources.

SO 1.5 Formulate and implement Bayesian Logistic Regression (BLR) models incorporating cell-line
derived differential expression information as informative priors for model parameters.

SO 1.6 Develop and evaluate a range of baseline Machine Learning models (e.g., standard Logistic
Regression, Support VectorMachines, RandomForest,MLP) for comparative analysis against
the Bayesian models.

SO 1.7 Implement and evaluate advanced Bayesian models, specifically Bayesian Neural Networks
(BNNs), to capture complex relationships.

SO 1.8 Rigorously evaluate the predictive performance of all developed models using stratified cross-
validation andmetrics suitable for imbalanceddata (Recall,MCC,F1-score), explicitly address-
ing class imbalance through data augmentation (SMOTE).

SO 1.9 Employ model explainability techniques (e.g., SHAP) on best-performing models to identify
and rank the contribution of individual genes to the prediction of tamoxifen resistance.

SO 1.10 Validate the prognostic significance and potential clinical relevance of the identified key
biomarkers using external datasets and survival analysismethodologies (e.g., Kaplan-Meier Sur-
vival Analysis, Enrichment Analysis).

2.2 Specific Objectives

Now that we have outlined the general objectives of the project, we can break them down into more specific
and actionable tasks, that are measurable and achievable within the scope of this study. The primary general
objective of this research is to identify potential genetic biomarkers predictive of tamoxifen resistance in breast
cancer through the integration of cell-line and patient data. To achieve this overarching goal, a series of specific,
measurable steps must be undertaken to ensure that the research is conducted systematically and effectively.
These steps include the acquisition of the data, its pre-processing, the development of an integration pipeline
to combine the data from the two different sources, the development and comparative evaluation of various
predictive models (including our proposed Bayesian framework), and thorough validation and interpretation
of the findings to ascertain their biological relevance andpotential clinical utility. The detailed specific objectives
related to biomarker discovery and prognostic modeling are outlined in Table 2.1.

5
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Table 2.2: Specific Objectives for pyHaiCS Library Development

ID Specific Objective Description

SO 2.1 Implement core Hamiltonian Monte Carlo (HMC) and Generalized HMC (GHMC) sam-
pling algorithms (single-chain and multi-chain) utilizing JAX for performance optimization
(automatic differentiation, JIT compilation, hardware acceleration).

SO 2.2 Implement a thorough suite of numerical integrators for simulating Hamiltonian dynamics,
including the standardVerlet/Leapfrog integrator andparametrizableMulti-Stage Splitting In-
tegrators (MSSIs, e.g., 2-stage and 3-stage).

SO 2.3 Develop and implement the s-AIA algorithm for automatic and adaptive tuning of HM-
C/GHMC sampler and integrator parameters.

SO 2.4 Design and implement a modular, intuitive, and user-friendly API.

SO 2.5 Integrate standardMarkov-ChainMonteCarlo (MCMC)diagnostic tools (e.g., Potential Scale
Reduction Factor - PSRF, Effective Sample Size - ESS, Monte Carlo Standard Error - MCSE)
for assessing sampling convergence and efficiency.

SO 2.6 Create comprehensive documentation, including detailed API references, practical tutorials
showcasing usage, and diverse benchmark examples (e.g., Bayesian Logistic Regression, multi-
variate Gaussian sampling, epidemiological models) for testing and demonstration.

SO 2.7 Release pyHaiCS as a publicly accessible open-source library to encourage community use and
contribution.

Complementing the biological research, the second general objective addresses a methodological gap by fo-
cusing on the development of the open-source Python library, pyHaiCS. This library seeks to provide the scien-
tific community with an accessible, efficient, and user-friendly tool for implementing advanced Hamiltonian-
inspiredMonte Carlo sampling techniques for Bayesian inference, exploiting the capabilities of the JAX frame-
work. The development process involves implementing core and advanced algorithms, ensuring seamless inte-
gration with existing scientific Python workflows, and providing comprehensive support for users to facilitate
broader adoption. The specific tasks required to realize this objective are enumerated in Table 2.2.

2.3 Scope of the Project & Limitations

To ensure clarity regarding the boundaries of this research endeavor, this section delineates the specific scope
of the project and acknowledges its inherent limitations (as summarized in Figure 2.1). The scope of this the-
sis is centered on the investigation of tamoxifen resistance mechanisms within the specific context of estrogen
receptor-positive (ER+) breast cancer. Methodologically, the core focus lies in the application and develop-
ment of advanced Bayesian statistical modeling techniques, particularly Bayesian Logistic Regression (BLR)
utilizing Hamiltonian Monte Carlo (HMC) based inference and Bayesian Neural Networks (BNNs). A key
aspect within the scope is the integration of multi-source genomic data, specifically leveraging RNA sequenc-
ing data from established MCF7 cell-lines (control versus tamoxifen-resistant) to inform prior distributions
within models trained on patient data. The patient data considered is restricted to ER+ cases documented as

6
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Project Scope & Limitations Overview

Scope (What is Included) Limitations (What is Excluded)

Focus: Tamoxifen Resis-
tance in ER+ Breast Cancer

Data: RNA-seq (MCF7 Cell-
Lines & TCGA Patients)

Modeling: Bayesian (BLR, BNNs),
HMC Inference, ML Baselines

Analysis: DEA, Data Integration,
SMOTE, CV (Recall, MCC), SHAP

Software: pyHaiCS Development
(HMC, GHMC, MSSIs, s-AIA)

Data: Public Only, Small Patient
Number, Inferred Resistance (TCGA)

-Omics/Clinical: RNA-seq Only,
No Clinical Feature Integration

Biology: Tamoxifen/ER+ Specific,
Cell-Line vs. Patient Simplification

Modeling: Specific Prior Method, HMC
Focus, Limited Hyperparameter Tuning

Software/Interpretation: py-
HaiCS Ongoing (e.g., No MMHMC),
Limited Interpretability Beyond SHAP

Figure 2.1: Visual Summary of the Project’s Scope and Limitations

having received tamoxifen treatment, with resistance inferred from clinical outcome records. The analytical
pipeline encompassed within this scope includes differential expression analysis (DEA) for initial biomarker
screening, strategies for integrating cell-line and patient expression data based on concordance, the application
of data augmentation techniques (specifically SMOTE) to address class imbalance in the patient cohort, rig-
orous model evaluation using stratified cross-validation and appropriate performance metrics (notably Recall
andMCC), andmodel interpretation via SHAP value analysis. Furthermore, the development of the pyHaiCS
Python library constitutes a significant component of this project’s scope. This includes the implementation of
core HMC and GHMC samplers, various numerical integrators (Verlet/Leapfrog, MSSIs), the adaptive s-AIA
tuning algorithm, and essential MCMC diagnostic tools, all leveraging the JAX framework for computational
efficiency and designed for integrationwithin the broader scientific Python ecosystem. The provision of bench-
mark examples and documentation for pyHaiCS is also considered within the project’s intentions.

Despite the openness of this study, several limitations necessarily constrain the reach and interpretation of
this work. Firstly, the study relies exclusively on publicly available RNA-seq datasets (MCF7 lines and TCGA
patients) and does not involve the generation of novel experimental data. The effective sample size of the patient
cohort, particularly after filtering for specific clinical criteria, remains relatively modest, which may impact the
statistical robustness and generalizability of our findings. The inference of tamoxifen resistance from clinical
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outcome data inTCGA,while a commonpractice, introduces a layer of potential ambiguity compared to direct
experimental measures of resistance. Furthermore, this research is confined to genomic data (RNA-seq); the
integration of other -omics data types (e.g., proteomics, epigenomics), which could offer a more comprehensive
biological picture, falls outside the current scope. Similarly, while basic clinical information informs patient
selection and outcome definition, the sophisticated integration of diverse clinical variables (e.g., tumor stage,
grade, patient comorbidities) into the predictive models is not undertaken here.

From abiological perspective, the focus on tamoxifen resistance in ER+ breast cancermeans that the findings,
particularly the identified biomarkers, may not be directly applicable to other endocrine therapies or different
breast cancer subtypes (e.g., HER2). Crucially, while the study identifies potential biomarkers through sta-
tistical association and model interpretation (SHAP), it does not perform experimental functional validation
to confirm causal roles in resistance. Moreover, the exploration of biological pathways is preliminary and con-
strained by the signature size and available annotation databases. Furthermore, the assumption that resistance
mechanisms observed in the MCF7 cell line directly mirror those in patient tumors represents a potential sim-
plification.

Regarding the modeling and software aspects, while a range of models is evaluated, the primary emphasis
remains on the specified Bayesian approaches, and an exhaustive comparison of all conceivableMachine Learn-
ing algorithms is not feasible, nor is a large-scale sweep of hyperparameter tuning for each model. Likewise,
the method for incorporating cell-line information as priors in the BLR models is rooted in a biologically-
motivated intuition provided by previous research on the project, yet may not be the most optimal approach.
Furthermore, the focus on HMC and its variants (GHMC, s-AIA) is deliberate, but other advanced sampling
methods (e.g., variational inference, sequential Monte Carlo) are not covered in detail. The pyHaiCS library,
while functional for the core methods used (HMC, GHMC, s-AIA), is presented as an ongoing development;
certain advanced HMC variants (like MMHMC) or exhaustive optimizations and comparisons against all ex-
isting MCMC platforms were not included in the scope of its development within this thesis timeframe. The
interpretability analysis, while informative, was primarily demonstrated on a selected model due to practical
constraints, and a comprehensive, comparative study across all complex models developed was not conducted.
Likewise, SHAP values provide a tool for interpretation at the individual feature level and exclusively for the
predictions of a given model, and while they can be informative, they do not provide a complete picture of the
underlying biological mechanisms involved in tamoxifen resistance. The biological interpretation of the identi-
fied biomarkers and pathways is based on existing literature and databases, andwhile effortsweremade to ensure
accuracy, the complexity of biological systems means that definitive conclusions should be drawn cautiously.
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3 Fundamentals & Theoretical Background:
An Elemental Initiation to Bayesian
Clinical Analysis

“Science is built upwith facts, as a house is with stones. But a collection
of facts is no more a science than a heap of stones is a house.”

∼Henri Poincaré, Science and Hypothesis (1905) Ch. 9 [13]

In this chapter, we introduce the reader to the theoretical foundations behind Bayesian statistical modeling
and Hamiltonian-based Monte Carlo methods. We begin by providing a comprehensive introduction to the
basics of breast cancer research and the pivotal role of Bayesianmodeling in clinical studies. We then present the
Bayesian Logistic Regression (BLR)model for binary classification, and its practical limitationswhichmotivate
the need for advanced sampling schemes. Therefore, we subsequently introduce the reader to the fundamentals
ofMonteCarlo (MC)methods, focusing on theRandom-WalkMetropolis-Hastings (RW-MH) algorithm, and
how its limitations prompt the need for more advanced sampling methods. Finally, we provide an in-depth
introduction to Hamiltonian-based methods, focusing on the Hamiltonian Monte Carlo (HMC) algorithm
(and its subsequent extensions), methods for numerical integration in the context of Hamiltonian dynamics,
and the development of adaptive schemes for deriving the optimal parameters of these integration methods.
Lastly, we conclude this chapter by providing a brief overview of the most relevant literature and related work
on the topic.

3.1 A Brief Introduction to Breast Cancer Research

In this section, we provide readers with a quick and accessible introduction to the field of breast cancer research.
In simple terms, a tumor is nothing more than an abnormal mass of tissue that forms when cells grow (and
divide) under unrestricted proliferation [14]. Tumorsmay be benign (i.e., not representing amajor health issue)
ormalignant: i.e., those that grow large and infiltrate into nearby tissues. The collectionof diseases originatedby
thesemalignant tumors are known as cancers [15–17] and represent one of themajor causes of deathworldwide
across all income levels [18, 19]. Despite there being over 100different types of cancerous diseases—categorized
based on the affected tissue or organ of the human body [17]—we hereby restrict ourselves to discussing breast
cancer in this work; the second leading cause of cancerous death, closely following lung cancer [20].

With nearly 2.3 million new diagnosed cases in the year 2020 — and nearly 3.9 million projected new cases
to be reached by 2030 [21]— breast cancer represents around 12% of all cancer diagnoses (∼ 25% in the case of
women exclusively), and accounts for almost 15% of all female cancer-related deaths, making it the most preva-
lent cancer among women [2]. Despite common beliefs, breast cancer is actually a spectrum of diseases that
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present distinct biological characteristics, and as a consequence, require unique treatments [22]. This hetero-
geneity is thus a crucial aspect of breast cancer and a correct identification of a tumor within the landscape of
breast cancer is essential to provide an accurate assessment of the disease. To put it simply, in the human breast,
threemajor groups of cells coexist: (1) luminal cells, which can be found in the lobules andwhose function is to
produce milk; (2) basal cells, responsible for pushing the milk into the ductal tubes by muscular contraption,
and (3) all the connective tissue holding everything in place, which is mainly comprised of fibrous and fatty
tissue [23, 24].

Histological Classification: Depending on where the tumor develops, breast cancers are classified in
the first place into either lobular or ductal, with the latter representing over 80% of the diagnosed cases. This
histological classification can be subsequently divided into lobular or ductal carcinoma in situ (LCIS or DCIS),
and the invasive lobular or ductal carcinomas (ILC and IDC). The invasive type constitutes a much higher risk
due to its ability to infiltrate other tissues [25].

Molecular Classification: Aside from the original location of the tumors, another classification of
breast cancer exists based on the presence (or absence) of specific receptors on the cancer cells such as the estrogen
receptor (ER), progesterone receptor (PR) or the human epidermal growth factor receptor 2 (HER2). An abun-
dance of any of these indicators is usually pointed out by referring to it as positive (+), while its absence or low
presence in the tumor is indicated by stating the receptor is negative (−). From this, the most widely accepted
classification of breast cancer subtypes consists of the following four major molecular subtypes [9]:

• Luminal A (ER+, PR+, HER2−) is the most common breast cancer subtype. It is characterized by an
overexpression of hormone receptors (ER and PR) and an absence of HER2. It has the most favorable
prognosis due to its small proliferation and aggressiveness compared to other subtypes. It can be treated
with hormone-targeted therapies, such as Tamoxifen, which we will discuss throughout this work.

• Luminal B (either ER/PR+, HER2+) is a far less common luminal subtype that also shows expression
of ER and PR, but in lower quantities than for Luminal A. This is paired with a high expression of
HER2 incurring in higher proliferation rates. These tumors usually have an intermediate prognosis and
accompany the hormone targeted therapies with HER2-targeted therapies.

• HER2-enriched (ER−, PR−, HER2+) is less common than the two previous cancer types and is charac-
terized by not having any hormone receptor expression. HER2-enriched tumors are treatedwith specific
therapies like trastuzumab (Herceptin) and other HER2-targeted drugs (e.g., Lapatinib).

• Basal (ER−, PR−, HER2−). Also known as triple-negative breast cancer (TNBC, or TN as in Figure
3.1) due to their lack of any of the three major receptors. With an incidence ranging from 10 to 20% of
cases, it has the poorest prognosis as none of the treatments available for the other subtypes can be used.
Therefore, it is usually treated by a combination of surgery and chemotherapy (often used in the rest of
subtypes as well, alongside the specific therapy).

Among these molecular subtypes (summarized below in Figure 3.1), luminal (ER+) subtypes are not only the
most common subtype but, in themajority of cases, offer the best treatment path for a complete recovery. They
are characterized by a high abundance of estrogen receptors present in their cancerous cells, which fuel their
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Figure 3.1: Molecular Classification of Breast Cancer Subtypes (Table Extracted from [30])

growth [26]. Therefore, understanding the intricate relationship between estrogen and these breast cancer cells
is pivotal in designing effective treatment strategies targeted to these cells specifically [4, 27–29].

The development of drugs such as tamoxifen— the most extensively used treatment in ER+ breast cancer
— has shown to reduce recurrence by ∼50% andmortality by ∼30% after a standard 5-year treatment following
surgery [8]. The idea behind this, as exemplified in Figure 3.2, is that tamoxifen binds to the estrogen receptors
in the cancer cells, blocking the estrogen from binding to the receptors, as estrogen promotes cell division and
growth in breast tissue; hence, stimulating the proliferation of cancer cells [31]. However, despite the success
of tamoxifen in treating ER+ breast cancer, a significant number of patients develop resistance to the drug
(estimated to be between 30-50% [9]), leading to a recurrence of the disease. This resistance is a major challenge
in the treatment of breast cancer, and understanding the mechanisms behind it is crucial to developing new
treatment strategies that can overcome it.

Although the exact biological mechanisms behind tamoxifen resistance are not yet fully understood, it has
been suggested that key genesmodulating estrogen such as ESR1 [32] or SOX2 [33], as well as pathways related
to the epidermal growth factor family [34], may play a role in the development of a resistance to the drug. In
addition, clinical trials have led to the discovery of prognostic signatures in breast cancer, such as the 21-gene
OncotypeDX [35] and the 70-geneMammaprint [36], which predict metastasis or recurrence in certain breast
cancer subtypes. More recently, 6-gene signatures have been identified as potential biomarkers responsible for
tamoxifen resistance in ER+breast cancer [37]. However, the complexity of the biologicalmechanisms involved
in tamoxifen resistancemakes it difficult to predict which patients will develop resistance to the drug, andmore
research is needed to identify reliable biomarkers that canbeused topredict this resistancephenomenonapriori:
as has been stated before, a standard tamoxifen treatment takes as long as 5 years, and if resistance is present or
acquired during that period of time, the patient may potentially lose precious time that could be used to try
alternative treatments.
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Figure 3.2: TamoxifenMechanism of Action in Breast Cancer Cells (Adapted from [38])

3.2 An Introduction to BayesianModeling & Clinical Studies

At the core of this work, the use of Bayesian models is quintessential to determining the resistance of MCF7
breast cancer cells under Tamoxifen therapy by expertly integrating informative prior knowledge from cell-lines
into the patient’s clinical data. This section seeks to provide the reader with a brief introduction to Bayesian
Statistical Modeling (BSM) and its application in clinical studies.

In the traditional frequentist approach, the parameters 𝜽 of a statistical modelℳ are considered fixed and
unknown, whereas the data𝒟 is random and collected through clinical trials. Thus, inference on themodel can
be made by evaluating the probability 𝑝(𝒟|𝜽). In contrast, Bayesian statistics treats the parameters as random
variables and the data as fixed, i.e., data informs the model. Thus, Bayesian inference is made by comput-
ing the posterior probability 𝑝(𝜽|𝒟). This allows the quantification of uncertainty about the parameters of
the model by specifying a prior distribution over them. The prior distribution encodes our beliefs about the
parameters before observing the data, and the posterior distribution encodes our beliefs about the parameters
after observing the data. The posterior distribution is obtained by updating the prior distribution using the
fundamental Bayes’ Theorem in Theorem 3.2.1 below.

Theorem 3.2.1 (Bayes’ Theorem). Let 𝜽 be the parameters of a statistical modelℳ, and𝒟 be the observed data.
Then, the posterior distribution of 𝜽 given𝒟 can be expressed as:

Posterior
⏞𝑝(𝜽|𝒟) =

Prior
⏞𝑝(𝜽)

Likelihood
⏞𝑝(𝒟|𝜽)

𝑝(𝒟)⏟
Marginal Likelihood

(3.1)
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where 𝑝(𝜽) is the prior distribution of 𝜽 (i.e, our initial belief about the parameters), 𝑝(𝒟|𝜽) is the likelihood of
the data given the parameters, and 𝑝(𝒟) is the marginal likelihood of the data.

Fundamentally,

• the posterior distribution 𝑝(𝜽|𝒟) encapsulates our updated knowledge. It offers not only a description
of the values of the model parameters, but also inherently accounts for the uncertainty associated with
them.

• the likelihood 𝑝(𝒟|𝜽) represents the statistical modelℳ used to describe the data𝒟.

• the prior 𝑝(𝜽) is used to pass onto the model our beliefs about the parameters 𝜽 and their uncertainty.

• themarginal likelihood 𝑝(𝒟) is a normalizing constant that ensures that the posterior distribution inte-
grates to one.

In practice, given a set of𝑁 data points 𝐱 = (𝐱1, … , 𝐱𝑛), the posterior under modelℳ is given by Eq. (3.2).

Posterior
⏞𝑝(𝜽|𝐱) =

Prior
⏞𝑝(𝜽)

Likelihood
⏞𝑝(𝐱|𝜽)

𝑝(𝐱)⏟
Marginal Likelihood

(3.2)

In this case, the marginal likelihood 𝑝(𝐱)— also known as the prior predictive distribution— guarantees that
the posterior 𝑝(𝜽|𝐱) integrates to one, and is obtained bymarginalizing the likelihood 𝑝(𝐱|𝜽) over the param-
eters 𝜽 of the model as in Eq. (3.3).

𝑝(𝐱) = ∫𝑝(𝐱|𝜽)𝑝(𝜽) 𝑑𝜽 (3.3)

Thus, the posterior is proportional to the product of the likelihood and the prior, as in Eq. (3.4).

𝑝(𝜽|𝐱) ∝ 𝑝(𝐱|𝜽)𝑝(𝜽) (3.4)

Moreover, given a new observation 𝐱̃, predictions can be made by using the posterior predictive distribution of
the model, conditional on the posterior distribution as:

𝑝(𝐱̃|𝐱) = ∫𝑝(𝐱̃, 𝜽|x) 𝑑𝜽 = ∫𝑝(𝐱̃|𝜽)𝑝(𝜽|x) 𝑑𝜽 (3.5)

Additionally, any expected value of a function of the parameters 𝑓(𝜽) over the posterior can be computed as
in Eq. (3.6). As we shall see in the next section, this property — and more specifically the complexity of the
integrals associated with it— is the foundational block of whywe need samplingmethods such asHamiltonian
Monte Carlo when dealing with Bayesian models.

E𝑝[𝑓(𝜽)] = ∫𝑓(𝜽)𝑝(𝜽|𝐱) 𝑑𝜽 (3.6)

Finally, the Bayesian modeling framework rests upon three key pillars:
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Table 3.1: Jeffrey’s Scale for Interpreting the Bayes Factor [40]

Bayes Factorℬ Strength of Evidence (forℳ1)

ℬ < 1 Negative (Supportsℳ2)
1 < ℬ < 3 Barely WorthMentioning
3 < ℬ < 10 Substantial
10 < ℬ < 30 Strong
30 < ℬ < 100 Very Strong
ℬ > 100 Decisive

1. Calculation of the Parameters: The parameters of the model can be calculated bymarginalizing the
posterior distribution. Moreover, given a subset of parameters 𝝑 that we are not interested in, we can
marginalize over them as in Eq. (3.7).

𝑝(𝜽|𝐱) = ∫𝑝(𝜽, 𝝑|𝐱) 𝑑𝝑 (3.7)

2. Prediction of NewData: The posterior predictive distribution can be used tomake predictions about
new observations by marginalizing the likelihood over the parameters 𝜽 as in Eq. (3.5).

3. Model Selection: The task of selecting a modelℳ1 over another modelℳ2 is performed by evaluating
the Bayes factor [39, 40] in Eq. (3.8): a Bayesian alternative to hypothesis testing in frequentist statistics
relying on the marginal likelihoods of the two models.

ℬ =
𝑝ℳ1

(𝐱)
𝑝ℳ2

(𝐱) =
∫𝑝(𝐱|𝜽1)𝑝(𝜽1) 𝑑𝜽1
∫𝑝(𝐱|𝜽2)𝑝(𝜽2) 𝑑𝜽2

(3.8)

where 𝑝ℳ1
(𝐱) and 𝑝ℳ2

(𝐱) are themarginal likelihoods of the twomodels, and 𝜽1 and 𝜽2 are the parameters
of the models. Based on this, [40] introduced a categorization for the values ofℬ based on in terms of
strength of evidence in favor of the modelℳ1 overℳ2. are summarized in Table 3.1.

A common issue in these Bayesian inference tasks is the computation of high-dimensional and usually analyt-
ically intractable integrals. Thus, sampling methods for overcoming this limitation will be next introduced in
Section 3.3.

Bayesian Logistic Regression – BLR

Bayesian Logistic Regression (BLR) is the probabilistic extension of the traditional point-estimate logistic re-
gression model by incorporating a prior distribution over the parameters of the model. In the BLR model,
given 𝐾 data instances {𝐱𝑘, 𝑦𝑘}𝛫𝑘=1 where 𝐱𝑘 = (1, 𝑥1, … , 𝑥𝐷) are vectors of𝐷 covariates and 𝑦𝑘 ∈ {0, 1} are the
binary responses, the probability of a particular outcome is linked to the linear predictor function through the
logit function as in Eq (3.9).

𝑝(𝑦𝑘|𝐱𝑘, 𝜽) = 𝜎(𝜽𝛵𝐱𝑘) =
1

1 + exp(−𝜽𝛵𝐱𝑘)
, 𝜽𝛵𝐱𝑘 ≡ logit(𝑝𝑘) = log(

𝑝𝑘
1 − 𝑝𝑘

) = 𝜃0 + 𝜃1𝑥1,𝑘 + … 𝜃𝐷𝑥𝐷,𝑘 (3.9)
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where 𝜽 = (𝜃0, 𝜃1, … , 𝜃𝐷)𝛵 are the parameters of the model, with the term 𝜃0 usually denoted as the intercept.
The prior distribution over the parameters 𝜽 is usually chosen to be a Multivariate Gaussian distribution as in
Eq. (3.10).

𝜽 ∼ 𝒩(𝝁, 𝚺), Usually 𝜽 ∼ 𝒩(𝟎, 𝐈𝐷+1) (3.10)

where 𝝁 ∈ ℝ𝐷+1 is the mean vector, 𝚺 ∈ ℝ𝐷+1 is the covariance matrix, 𝟎 is the zero vector and 𝐈𝐷+1 is the
identity matrix of order𝐷+1. In the upcoming sections we shall describe how information extracted from the
MCF7 cell-lines was incorporated into the priors of the coefficients in order to inform our BLRmodel.

In order to simplify the notation, let us define the vectorized response variable 𝐲 = (𝑦1, … , 𝑦𝛫), and the design
matrix𝑋 ∈ ℝ𝛫,𝐷 in Eq. (3.11) as the input to the model.

𝑋 = (

1 𝑥1,1 … 𝑥1,𝐷
1 𝑥2,1 … 𝑥2,𝐷
⋮ ⋮ ⋱ ⋮
1 𝑥𝛫,1 … 𝑥𝛫,𝐷

) (3.11)

The likelihood of the data is given by the product of the Bernoulli distributions as in Eq. (3.12).

ℒ(𝐲|𝑋, 𝜽) ≡ 𝑝(𝐲|𝑋, 𝜽) =
𝛫

∏
𝑘=1

𝑝(𝑦𝑘|𝑋𝑘, 𝜽) =
𝛫

∏
𝑘=1

(
exp(𝑋𝑘𝜽)

1 + exp(𝑋𝑘𝜽)
)
𝑦𝑘
( 1
1 + exp(𝑋𝑘𝜽)

)
1−𝑦𝑘

(3.12)

where𝑋𝑘 = (1, 𝑥𝑘,1, … , 𝑥𝑘,𝐷) is the 𝑘-th entry row vector of the design matrix𝑋.

3.3 An Introduction toHamiltonian-basedMonte CarloMethods

As devised in Section 3.2, the practical application of Bayesian statistical modeling techniques entails the com-
putation of intractable integrals over marginalizations of complex probability distributions. For instance, at
inference time, given a new observation, one can obtain predictions by computing the posterior predictive dis-
tribution conditioned on the posterior of 𝜽 as in Eq. (3.13).

𝑝(𝐱̃|x) = ∫𝑝(𝐱̃, 𝜽|x) 𝑑𝜽 = ∫𝑝(𝐱̃|𝜽)𝑝(𝜽|x) 𝑑𝜽 (3.13)

Unfortunately, in most real-life scenarios, these complex integrals have no analytical solution, and thus nu-
merical approximation methods are required. At the core of these numerical integration algorithms, we find
Markov-ChainMonte Carlo (MCMC) methods, a specific subset of the broader Monte Carlo (MC) family.

For the uninitiated readers, the goal of Monte Carlo methods is to draw samples from a target distribution
𝜋(𝜽), which can in turn be used to estimate an integral 𝐼 by using a sample average estimator 𝐼—also know as
the Monte Carlo estimator— as in Eq. (3.14).

𝐼 = E𝜋[𝑓(𝜽)] = ∫𝑓(𝜽)𝜋(𝜽) 𝑑𝜽
𝑛→∞
−−−−→ 𝐼 = 1

𝑁

𝛮

∑
𝑖=1

𝑓(𝜽𝑖), 𝜽𝑖 ∼ 𝜋(𝜽) (i.i.d samples) (3.14)
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As such, the whole principle behind these numerical methods relies on the assumption that an integral of a
function𝑓(𝜽) can be expressed as an expected value over a probability distribution𝜋(𝜽) (an example is provided
in the box below). This methodology is followed by all MC methods and the differences among them emerge
mainly from the approach taken to draw the samples.

Example – Monte Carlo Estimation of a Simple Integral

Let us say that we want to compute the integral of 𝑓(𝑥) = 𝑥2 over the interval [𝑎, 𝑏] using the Monte
Carlo estimator. From Eq. (3.14), the integral of 𝑓(𝑥) can be rewritten as an expected value over a
uniform target distribution 𝜋(𝑥) as:

𝐼′ = ∫𝑓(𝑥) 𝑑𝑥 = ∫𝑓(𝑥)𝜋(𝑥)𝜋(𝑥) 𝑑𝑥
𝜋(𝑥)≡𝑈(𝑎,𝑏)
−−−−−−−−−→ 𝐼′ = 𝑏 − 𝑎

𝑁

𝛮

∑
𝑖=1

𝑓(𝑥𝑖), 𝑥𝑖 ∼ Uniform(𝑎, 𝑏)

as:

𝜋(𝑥) = {
1

𝑏 − 𝑎 for 𝑥 ∈ [𝑎, 𝑏]

0 elsewhere

In this work, we focus on a subset of Markov-Chain Monte Carlo based on Hamiltonian dynamics [41–43].
However, in general terms, MCMC methods iteratively construct a Markov-Chain whose invariant distribu-
tion is the target distribution 𝜋(𝜽). Generating a large number of walks over the chain leads to its eventual
convergence to the target distribution. Moreover, theMarkov property in Eq. (3.15) guaranties that transitions
to a new state in the chain depend exclusively on the current state [44, 45]. That is:

𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛, … , 𝑋0 = 𝑥0) = 𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛) (3.15)

In Algorithm 1, we present the most basic form of Markov-Chain Monte Carlo sampling: a Random-Walk
Metropolis-Hastings (RW-MH) sampler [46, 47]. Every iteration of the RW-MH algorithm consists of two
major steps:

1. A move in the parameter space is generated from the proposal distribution 𝑞(𝜽′|𝜽)

2. An acceptance-rejection test—also knowas theMetropolis-Hastings test (e.g., also used in the Simulated
Annealing algorithm for combinatorial optimization [48, 49]) — is used to determine if the proposed
move in the Markov-Chain should be accepted. For that purpose, an acceptance probability 𝛼—which
depends on the current and previous states — is calculated.

However, because of the Random-Walk behavior of the RW-MH method, the parameter space is poorly ex-
plored, and thus the Markov-Chain slowly converges towards the desired target distribution. Additionally, as
the number of dimensions in the problem increases (as is usually the case in real-world problems) this issue only
becomes worse.

In order to circumvent these obstacles, Hamiltonian-based Markov-Chain Monte Carlo methods severely
improve upon the performance of the chain convergence by applying deterministic proposals frommolecular
dynamics (MD). In essence, new states are proposed by computing trajectories according to Hamiltonian dy-
namics by using numerical integration methods (such as the Verlet/Leapfrog integrator from Algorithm 3).
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Algorithm 1 Random-Walk Metropolis-Hastings (RW-MH)
1: Input:

𝑁: Number of Monte Carlo Samples
𝑞(𝜽′|𝜽): Proposal Distribution
𝜋(𝜽): Target Distribution

2: Output:
{𝜽𝑛}𝛮𝑛=1: Samples from the Target Distribution

3: Initialize 𝜽0
4: for 𝑛 = 1 to𝑁 do
5: 𝜽 = 𝜽𝑛−1
6: Sample Proposal 𝜽′ ∼ 𝑞(𝜽′|𝜽)
7: Compute Acceptance Probability: 𝛼 = min{1, 𝜋(𝜽

′)𝑞(𝜽|𝜽′)

𝜋(𝜽)𝑞(𝜽′|𝜽)
}

8: Sample 𝑢 ∼ Uniform(0, 1)
9: if 𝑢 < 𝛼 then
10: 𝜽𝑛 = 𝜽′ // Update Accepted
11: else
12: 𝜽𝑛 = 𝜽 // Update Rejected
13: end if
14: end for

This bypasses the slow exploration of the state space that occurs whenMetropolis updates are done using a sim-
ple random-walk proposal distribution. As the simplest example of such methods, Hamiltonian Monte Carlo
(HMC) [41, 42, 50–52], produces a chain whose invariant distribution is an augmented target distribution
𝜋(𝜽, p) related to the Hamiltonian function𝐻(𝜽, p) as in Eq. (3.16).

𝜋(𝜽, p) = 𝜋(𝜽)𝑝(p) ∝ exp(−𝐻(𝜽, p)) (3.16)

where p is an auxiliary momentum variable1 that is usually drawn from a Gaussian distribution p ∼ 𝒩(0,𝑀).
The Hamiltonian 𝐻(𝜽, p) is a mathematical tool stemming from physics, where a system of 𝐷 particles is

described by its energy and time evolution in 𝑡. The system is represented by two generalized canonical coordi-
nates, one for the position 𝜽 = (𝜽1, … , 𝜽𝐷) and one for themomentum p = (p1, … , p𝐷). In the HMCmethod,
a separable Hamiltonian with two terms that are independent of each other is considered as in Eq. (3.17).

𝐻(𝜽, p) = 𝐾(p) + 𝑈(𝜽) = 1
2p

𝛵𝑀−1p + 𝑈(𝜽) (3.17)

where 𝑈(𝜽) and 𝐾(p) denote the potential and kinetic energy functions, respectively. The kinetic energy is
defined using the auxiliary momentum variables p and a mass matrix𝑀, which is a symmetric positive definite
as in Eq. (3.18).

𝐾(p) = 1
2p

𝛵𝑀−1p (3.18)

1Note that, in the case ofHMC, thesemomentum variables are discarded after every iteration. However, for GHMCandMMHMC,
they are updated and refined across iterations.
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Meanwhile, the potential energy term is related to the target distribution as in Eq. (3.19).

𝑈(𝜽) = − log𝜋(𝜽) + const. (3.19)

Finally, the dynamics of the particle system are described by theHamiltonian equations of motion in Eq. (3.20):
a set of ordinary differential equations for the generalized canonical coordinates. In practice, a proposal for
the new state (𝜽′, p′) is generated by integrating these Hamiltonian dynamics using a numerical integratorΨ𝜀,𝐿
— such as the Verlet/Leapfrog integrator in Algorithm 3 — for 𝐿 steps (i.e., the trajectory length) and with a
step-size 𝜀. The complete HMC algorithm is summarized in Algorithm 2.

𝜽̇ = 𝐻p(𝜽, p; 𝑡) = 𝑀−1p 𝐩̇ = −𝐻𝜽(𝜽, p; 𝑡) = −𝑈𝜽(𝜽) (3.20)

Moreover, by defining 𝐳 = (𝜽, p) we can rewrite the Hamiltonian dynamics in Eq. (3.20) in matrix form as in
Eq. (3.21).

𝐳̇ = 𝐉𝐻𝐳(𝐳) 𝐉 = (
0 𝐼
−𝐼 0

) (3.21)

where 𝐼 is the𝐷×𝐷 identitymatrix. Fromthis alternative formulation, several keyproperties of theHamiltonian
can be derived [50, 53–55]:

1. Conservation of the Hamiltonian: That is, any fluctuation in the potential𝑈(𝜽) of the system, must
be balanced by a change in the Kinetic energy𝐾(p).

𝐻̇(𝜽, p) = ∇𝐻(𝜽, p)𝛵𝐽−1∇𝐻(𝜽, p) = 0 (3.22)

Theorem3.3.1 (Conservationof theHamiltonian). Let𝐻(𝜽, p, 𝑡) be theHamiltonian of a system,where
𝜽 and p are the generalized coordinates and momenta, respectively. If the Hamiltonian does not explicitly
depend on time, i.e., 𝐻̇(𝜽, p) = 0, then the Hamiltonian is conserved. Formally, this can be stated as:

𝐻̇(𝜽, p, 𝑡) ≡ 𝑑𝐻
𝑑𝑡 = 𝜕𝐻

𝜕𝜽 𝜽̇ +
𝜕𝐻
𝜕𝐩 𝐩̇ +

𝜕𝐻
𝜕𝑡 = 0 (3.23)

where 𝜽̇ and 𝐩̇ are the time derivatives of 𝜽 and p, respectively.

2. Conservation of the Volume: The differential volume element 𝑑𝐳 is conserved. That is,∇ ⋅ 𝐳̇ = 0.

Theorem 3.3.2 (Conservation of Volume under theHamiltonian, Liouville’s Theorem). Let𝐻(𝜽, p, 𝑡)
be the Hamiltonian of a system with generalized coordinates 𝜽 and momenta 𝐩. Then, the phase-space
distribution function 𝜌(𝜽, p, 𝑡), i.e., the density of states in the phase space, satisfies Liouville’s equation:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝐳̇) =

𝜕𝜌
𝜕𝑡 +

𝐷

∑
𝑖=1

(
𝜕𝜌
𝜕𝜃𝑖

𝜃̇𝑖 +
𝜕𝜌
𝜕𝑝𝑖

𝑝̇𝑖) = 0 (3.24)
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where 𝐳̇ = (𝜽̇, 𝐩̇) is the phase-space velocity vector. In Hamiltonian mechanics, this reduces to:

∇ ⋅ 𝐳̇ = 𝜕𝜽̇
𝜕𝜽 +

𝜕𝐩̇
𝜕𝐩 = 0 (3.25)

Thus, the Hamiltonian𝐻(𝜽, p, 𝑡) is conserved along the trajectories of the system in the phase-space or, al-
ternatively, the phase-space volume is conserved over time.

Proof. Let 𝐳̇ = (𝜽̇, 𝐩̇) be the phase-space velocity vector of our Hamiltonian. Then, the divergence of 𝐳̇
can be expressed as:

∇ ⋅ 𝐳̇ = ∇𝛵𝐳̇ = ( 𝜕𝜕𝜽 ,
𝜕
𝜕𝐩) ⋅ (𝜽̇, 𝐩̇)

𝛵

= 𝜕𝜽̇
𝜕𝜽 +

𝜕𝐩̇
𝜕𝐩

= 𝜕
𝜕𝜽(𝑀

−1𝐩) + 𝜕
𝜕𝐩(−𝑈𝜽(𝜽)) (from Eq. (3.20))

= 0 (Separable Hamiltoninan as in Eq. (3.17))

(3.26)

�

3. Reversibility of the Hamiltonian Flow: For a Hamiltonian flowΦ𝑡 ∶ Φ𝑡(𝐳)𝛵𝐉−1Φ𝑡(𝐳) = 𝐉−1, ∀𝐳 ∈ Ω
and a mappingℱ(𝜽, p) = (𝜽, −p) in the phase-spaceΩ, then:

Φ−𝑡 = ℱ ∘ Φ𝑡 ∘ ℱ (3.27)

where ∘ is the composition operator. Thus, a backwards evolution in theHamiltonian chain is equivalent
to flipping the initial momenta, evolving in time, and flipping the final momenta. This is an essential
condition for the Markov-Chain to converge to an invariant target distribution [50, 53, 55].

In practice, in all Hamiltonian-based samplers, we devise a first burn-in/warm-up stage where the algorithm
evolves the chain until it has converged to the intended target distribution. Thus, the samples taken during this
phase are discarded. After the burn-in stage is finished and convergence has been reached, samples are collected
at the production stage (i.e., the𝑁 samples mentioned throughout this section).

For reference, Algorithm 3 summarizes the Verlet or Leapfrog integrator [50, 56], the most popular and
most intuitive integration scheme for Hamiltonian dynamics (see Eq. (3.28)). However, we believe that the
study of these numerical integrators is well outside the scope of this thesis, as we wish to exclusively provide
the most essential theoretical background to understand this work. Nevertheless, please note that there exists a
vast area of research delving into more robust and efficient integrationmethods for improvingHMC sampling
[50, 51, 55, 57–63].

p 𝜀

2
= p0 −

𝜀
2𝑈𝜽(𝜽0)

𝜽𝜀 = 𝜽0 + 𝜀𝑀−1p 𝜀

2

p𝜀 = p 𝜀

2
− 𝜀
2𝑈𝜽(𝜽𝜀)

(3.28)
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Algorithm 2HamiltonianMonte Carlo (HMC)
1: Input:

𝑁: Number of Monte Carlo Samples
𝜀: Step-Size
𝐿: Number of Integration Steps (Trajectory Length)
𝑀: Mass Matrix
Ψ𝜀,𝐿: Hamiltonian Numerical Integrator

2: Output:
{𝜽𝑛}𝛮𝑛=1: Samples from the Target Distribution

3: Initialize 𝜽0
4: for 𝑛 = 1 to𝑁 do
5: 𝜽 = 𝜽𝑛−1
6: Sample Momentum p ∼ 𝒩(0,𝑀)
7: Integrate Hamiltonian Dynamics to Generate Update Proposal: (𝜽′, p′) = Ψ𝜀,𝐿(𝜽, p)
8: ComputeΔ𝐻 = 𝐻(𝜽′, p′) − 𝐻(𝜽, p)
9: // Metropolis-Hastings Test:
10: Compute Acceptance Probability: 𝛼 = min{1, exp(−Δ𝐻)}
11: Sample 𝑢 ∼ Uniform(0, 1)
12: if 𝑢 < 𝛼 then
13: 𝜽𝑛 = 𝜽′ // Update Accepted
14: else
15: 𝜽𝑛 = 𝜽 // Update Rejected
16: end if
17: DiscardMomentum p′
18: end for

Although at this point the reader should be more than familiar enough with the intricacies of Hamiltonian
sampling, let us provide some additional interesting properties of these samplers. In HMC, the momentum
variables p are discarded at the end of every iteration, i.e., potentially, valuable information between steps in the
chainmay be lost. In practice, onemay lose track of a good exploration by resorting to this full momentum up-
date at each iteration, slowing down convergence. One solution to this problem— adopted by the Generalized
Hamiltonian Monte Carlo (GHMC) [50, 51, 64] method in Algorithm 4— is to replace the momentum dis-
cardswith a partialmomentumupdate (PMU), i.e., in every iteration, a newmomentumupdatep∗ is proposed.
Instead of drawing a new momentum p in every iteration, we draw an additional noise vector 𝝁 ∼ 𝒩(0,𝑀) as
compute the proposed updates as in Eq. (3.29).

p∗ = √1 − 𝜙p + √𝜙𝝁

𝝁∗ = −√𝜙p + √1 − 𝜙𝝁
(3.29)

where the role of 𝜙 ∈ (0, 1] is to control the extent to which the momentum can deviate from its current direc-
tion. Conversely, as the momentum is not discarded completely from one iteration to the next, theMetropolis-
Hastings test in GHMC includes a momentum flip upon rejectionℱ(𝜽, p) = (𝜽, −p). By applying these two
modifications, the resultingMarkov-Chain is said to be irreversible, which accelerates convergence and reduces
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Algorithm 3 Verlet/Leapfrog Numerical Integrator
1: Input:

(𝜽, p): Initial Position &Momentum
𝜀: Step-Size
𝐿: Number of Integration Steps

2: Output:
(𝜽′, p′): Updated Position &Momentum

3: Half-Step Update forMomentum: p = p − 𝜀

2
𝑈𝜽(𝜽)

4: for 𝑖 = 1 to 𝐿 − 1 do
5: Full-Step Update for Position: 𝜽 = 𝜽 + 𝜀𝑀−1p
6: Full-Step Update forMomentum: p = p − 𝜀𝑈𝜽(𝜽)
7: end for
8: Full-Step Update for Position: 𝜽′ = 𝜽 + 𝜀𝑀−1p
9: Half-Step Update forMomentum: p′ = p − 𝜀

2
𝑈𝜽(𝜽)

variance in the samples [65]. If 𝜙 = 0, then one long trajectory is produced without the partial momentum
update. This is called theMolecular Dynamics Monte Carlo (MDMC) method.

Furthermore, by building upon the improvements of GHMC, we can extend the sampler by adding Impor-
tance Sampling (IS) [66]. As a quick overview, importance sampling is a subtype of traditional Monte Carlo
(i.e., non-Markovian) methods where instead of sampling directly from the desired target distribution 𝜋(𝜽),
samples are taken from an alternative distribution, often called the importance distribution 𝑞(𝜽). Thus, the
expected value problem in Eq. (3.14) can be rewritten in terms of these distributions as in Eq. (3.30).

𝐼 = E𝜋[𝑓(𝜽)] = ∫𝑓(𝜽)𝜋(𝜽) 𝑑𝜽 = ∫𝑓(𝜽)𝜋(𝜽)𝑞(𝜽)𝑞(𝜽) 𝑑𝜽

𝐼
𝑛→∞
−−−−→ 𝐼 =

∑𝛮
𝑖=1 𝜔𝑖𝑓(𝜽𝑖)

∑𝛮
𝑖=1 𝜔𝑖

, 𝜽𝑖 ∼ 𝑞(𝜽), 𝜔𝑖 =
𝜋(𝜽𝑖)
𝑞(𝜽𝑖)

(3.30)

Following this approach, the Mix & Match Hamiltonian Monte Carlo (MMHMC) [50, 51] method in Al-
gorithm 5 was devised. Without getting into excessive detail, a 𝑘-th order truncated modified Hamiltonian is
introduced as in Eq. (3.31) following an asymptotic expansion in powers of the integration step-size. As a result,
the usage ofmodifiedHamiltonians entails a reduction in the expected energy error in the numerical integration
[50, 67–69].

𝐻̃[𝑘](𝜽, p) = 𝐻(𝜽, p) + 𝜀𝑝𝐻𝑝+1(𝜽, p) + ⋯ + 𝜀𝑘−1𝐻𝑘(𝜽, p) (3.31)

Thus, in the case ofMMHMC, sampling is donewith respect to amodifieddistribution 𝜋̃(𝜽, p) as inEq. (3.32).

𝜋̃(𝜽, p) ∝ exp(−𝐻̃[𝑘](𝜽, p)) (3.32)

From this, the original distribution can be recovered by the importance weights in Eq. (3.33).

𝜔𝑖 = exp(−[𝐻(𝜽𝑖, p𝑖) − 𝐻̃[𝑘](𝜽𝑖, p𝑖)]) (3.33)
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Algorithm 4 Generalized HamiltonianMonte Carlo (GHMC)
1: Input:

𝑁: Number of Monte Carlo Samples
𝜀: Step-Size
𝐿: Number of Integration Steps (Trajectory Length)
𝑀: Mass Matrix
𝜙: MomentumNoise Parameter (𝜙 ∈ (0, 1])
Ψ𝜀,𝐿: Hamiltonian Numerical Integrator

2: Output:
{𝜽𝑛}𝛮𝑛=1: Samples from the Target Distribution

3: Initialize (𝜽0, p0)
4: for 𝑛 = 1 to𝑁 do
5: (𝜽, p) = (𝜽𝑛−1, p𝑛−1)
6: // PartialMomentum Update:
7: Sample 𝝁 ∼ 𝒩(0,𝑀)
8: Proposed UpdatedMomentum: p∗ = √1 − 𝜙p + √𝜙𝝁
9: Proposed Noise Vector: 𝝁∗ = −√𝜙p + √1 − 𝜙𝝁
10: Integrate Hamiltonian Dynamics to Generate Update Proposal: (𝜽′, p′) = Ψ𝜀,𝐿(𝜽, p∗)
11: ComputeΔ𝐻 = 𝐻(𝜽′, p′) − 𝐻(𝜽, p∗)
12: // Metropolis-Hastings Test:
13: Compute Acceptance Probability: 𝛼 = min{1, exp(−Δ𝐻)}
14: Sample 𝑢 ∼ Uniform(0, 1)
15: if 𝑢 < 𝛼 then
16: (𝜽𝑛, p𝑛) = (𝜽′, p′) // Update Accepted
17: else
18: // Momentum Flip:
19: (𝜽𝑛, p𝑛) = (𝜽, −p∗) // Update Rejected
20: end if
21: end for

Furthermore, due to the introduction of the modified Hamiltonian, the partial momentum update must be
modified as well by using an extendedHamiltonian as in Eq. (3.34).

𝐻̂(𝜽, p, 𝝁) = 𝐻̃[𝑘](𝜽, p) + 𝐾(𝝁) = 𝐻̃[𝑘](𝜽, p) + 1
2𝝁

𝛵𝑀−1𝝁 (3.34)

Finally, for a much more extensive and in-detail discussion on MMHMC we refer the reader to [50, 51],
and provide in Table 3.2 a comprehensive summary of the relevant properties of Hamiltonian-based samplers
against those of vanillaRandom-Walk Metropolis-Hastings. In general terms, the reader should keep in mind
that the performance of these methods is essentially determined by the following factors:

• Choice of Sampler: Aswehave seen,Hamiltonian-based samplers aremore efficient thanRandom-Walk
Metropolis-Hastings due to their ability to explore the target distribution more effectively by simulating
theHamiltonian dynamics of a system tomodel theMarkov-Chain. Within this family ofmethods, each
algorithm builds upon the previous one by introducing additional modifications such as partial momen-
tum updates, modified Hamiltonians, or importance sampling re-weighting. From HMC, where the
auxiliary momenta are discarded at each iteration; GHMC, where a partial momentum update is pro-
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Algorithm 5Mix &Match HamiltonianMonte Carlo (MMHMC)
1: Input:

𝑁: Number of Monte Carlo Samples
𝜀: Step-Size
𝐿: Number of Integration Steps (Trajectory Length)
𝑀: Mass Matrix
𝜙: MomentumNoise Parameter (𝜙 ∈ (0, 1])
Ψ𝜀,𝐿: Hamiltonian Numerical Integrator

2: Output:
{𝜽𝑛}𝛮𝑛=1: Samples from the Target Distribution

3: Initialize (𝜽0, p0)
4: for 𝑛 = 1 to𝑁 do
5: (𝜽, p) = (𝜽𝑛−1, p𝑛−1)
6: // PartialMomentum Update:
7: Sample 𝝁 ∼ 𝒩(0,𝑀)
8: Proposed UpdatedMomentum: p∗ = √1 − 𝜙p + √𝜙𝝁
9: Proposed Noise Vector: 𝝁∗ = −√𝜙p + √1 − 𝜙𝝁
10: ComputeΔ𝐻̂ = 𝐻̂(𝜽, p∗, 𝝁∗) − 𝐻̂(𝜽, p, 𝝁)
11: // Metropolis-Hastings Test (forMomentum Acceptance):
12: Compute Acceptance Probability: 𝑃 = min{1, exp(−Δ𝐻̂)}
13: Sample 𝑣 ∼ Uniform(0, 1)
14: if 𝑣 < 𝑃 then
15: p† = p∗ // Update Accepted
16: else
17: p† = p // Update Rejected
18: end if
19: Integrate Hamiltonian Dynamics to Generate Update Proposal: (𝜽′, p′) = Ψ𝜀,𝐿(𝜽, p†)
20: ComputeΔ𝐻̃[𝑘] = 𝐻̃[𝑘](𝜽′, p′) − 𝐻̃[𝑘](𝜽, p†)
21: // Metropolis-Hastings Test:
22: Compute Acceptance Probability: 𝛼 = min{1, exp(−Δ𝐻̃[𝑘])}
23: Sample 𝑢 ∼ Uniform(0, 1)
24: if 𝑢 < 𝛼 then
25: (𝜽𝑛, p𝑛) = (𝜽′, p′) // Update Accepted
26: else
27: (𝜽𝑛, p𝑛) = (𝜽, −p†) // Update Rejected, Momentum Flip
28: end if
29: ComputeΔ𝐻 = 𝐻(𝜽𝑛, p𝑛) − 𝐻̃[𝑘](𝜽𝑛, p𝑛)
30: Compute Weight: 𝜔𝑛 = exp(−Δ𝐻)
31: end for

32: Final Monte Carlo Estimator (w/ Importance SamplingWeights): 𝐼̂𝛮 =
∑𝛮
𝑖=1 𝜔𝑖𝑓(𝜽𝑖)

∑𝛮
𝑖=1 𝜔𝑖
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posed; andfinally toMMHMC,where importance sampling andmodifiedHamiltonians are introduced,
the performance of the sampler is improved by gradually adding these modifications.

Please note that, in this thesis, some additional methods such as the Targeted Shadow Hamiltonian
Monte Carlo (TSHMC) [70] or the Generalized Shadow Hamiltonian Monte Carlo (GSHMC) [71]
have been left out of this discussion for the sake of brevity and because they represent an intermediate
step between GHMC andMMHMC, where GHMC is simply extended by using the 𝑘-th order modi-
fied Hamiltonians 𝐻̃[𝑘](𝜽, p).

• Choice of Integrator: Despite only having presented the Verlet or Leapfrog integrator in this work,
there exists a vast area of research on the development of more efficient and robust numerical integrators
for Hamiltonian dynamics. The choice of integrator is crucial for the performance of the sampler, as it
directly affects the accuracy of the numerical approximation of theHamiltonian dynamics. For example,
the choice of symplectic integrators is essential for ensuring the conservation of the Hamiltonian and
the volume in the phase-space as stated in Theorems 3.3.1 and 3.3.2. Likewise, extensive work has been
carried in the design ofmulit-stage integrators (whichwill be introduced in a latter section), or numerical
integrators that can be used under modified (or shadow) Hamiltonians [50, 57, 58].

• Choice of Parameters: The choice of the step-size 𝜀, the trajectory length 𝐿, and the momentum noise
parameter 𝜙 are all crucial for the performance of the sampler. If 𝜀 is too small, the sampler will take
too long to explore the target distribution, while if it is too large, it may lead to integration inaccuracies.
Similarly, the choice of 𝐿 is crucial for the accuracy and sampling efficiency of the numerical integration
of the Hamiltonian dynamics. The momentum noise parameter 𝜙 controls the extent to which the mo-
mentum can deviate from its current direction, thus values that are too large increase momenta rejection
rates, while values that are too small may slow down convergence. Additionally, the order of truncation
𝑘 in themodifiedHamiltonians is also crucial: higher-order truncations lead tomore accurate numerical
approximations of the Hamiltonian, but also increase the computational cost of the sampler.

As away to counteract the potential issues with the choice of these parameters, one can resort to adaptive
methods (more on this later) such as the No-U-Turn Sampler (NUTS) [72–74] that automatically tune
the step-size 𝜀 and the trajectory length 𝐿 during the burn-in phase of the sampler. Likewise, alternative
ad-hoc schemes can be devised by applying combinatorial optimization techniques (e.g., Simulated An-
nealing, Genetic Algorithms, Swarm Intelligence methods, etc.) to finding the optimal configuration of
these parameters. However, the computational cost of these methods would be significant considering
the complexity of the problem.

• Choice of Initial Configuration: Finally, the reader might have noticed that we have not yet com-
mented on the choice of the initial configuration (𝜽0, p0) in the samplers. This is because, as of the
time of this writing, not much work has been done on the optimization of the initial configuration for
Hamiltonian-based samplers. However, it is known that the choice of the initial configuration can have
a significant impact on the performance of the sampler, as it can affect the convergence rate and the qual-
ity of the samples. Thus, the usual practical approach to solving this potential issue is to sample several
chains (𝒞1, 𝒞2, … ,𝒞𝑚) in parallel, starting from different initial configurations, and then combine the
samples to obtain the final estimate of the target distribution [51, 75].
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In theory, provided that the𝑚 chains have sufficiently converged to the target distribution, they should
reduce the error of the estimator 𝐼 by a factor of √𝑚, which would be equivalent to the error reduction
we should get from sampling a single chain𝒞with𝑚-times more samples (i.e., |𝒞| = 𝑚 ⋅ 𝑁). However,
when sampling from aMarkov-Chain, there is a burn-in/warm-up overhead as the first 𝑏 samples have to
be discarded to ensure that the chain has converged, i.e., for single-chainMCMC sampling this overhead
is of 𝑏/(𝑁 + 𝑏), while for multi-chain sampling the resulting overhead is (𝑚 ⋅ 𝑏)/(𝑁 + 𝑏). In other
words, single-chain sampling should be more performant in terms of reducing burn-in overhead, were
we capable of starting the chain from an optimal configuration (𝜽∗0 , p∗0). On the other hand, the shorter
𝑚 chains are independent and thus can be run in parallel, which can lead to significant speedups in the
sampling process.

Although this multi-chain approach is computationally expensive, it is themost common practice in the
field. However, the development of more efficient methods for optimizing the initial configuration of
the sampler is an open research topic that remains to be addressed.

Although the aforementioned aspects are outside the scope of this thesis, we provide below an interesting ex-
ample of existing adaptive methods for multi-stage integrators [57].

Example – Discussion on Adaptive Tuning Methods for 2-Stage Integrators

The use of multi-stage splitting integrators has shown improved conservation of theHamiltonians over
the traditional Verlet/Leapfrogmethod inAlgorithm 3 [76]. However, they are typicallymore unstable
[63] and thus greatly benefit fromadaptivemethods for parameter tuning and selection. For that reason,
the Adaptive Integration Approach (AIA) [77] introduced an automatic selection process for the best
Hamiltonian numerical integrator in practical scenarios. Given the two solution flows𝜑𝛢𝑡 and𝜑𝛣𝑡 in Eq.
(3.35).

𝜑𝛢𝑡 (𝜽, 𝐩) = (𝜽, 𝐩 − 𝑡𝑈𝜽(𝜽)) 𝜑𝛣𝑡 (𝜽, 𝐩) = (𝜽 + 𝑡𝑀−1𝐩, 𝐩) (3.35)

We can define any two-stage splitting integratorΨ(2)𝜀 as in Eq. (3.36) (we spare the reader the derivation
of how these integrators come to be, as they serve here the sole purpose of illustrating the adaptive tuning
schemes).

Ψ(2)𝜀 = 𝜑𝛣𝑏𝜀 ∘ 𝜑𝛢𝜀/2 ∘ 𝜑
𝛣
(1−2𝑏)𝜀 ∘ 𝜑𝛢𝜀/2 ∘ 𝜑

𝛣
𝑏𝜀 (3.36)

where 0 < 𝑏 < 1/2 is a parameter that specifies the individual integrator within the family, 𝜀 is the
step-size, and ∘ is the composition operator. Then, theModified AIA (MAIA) and ExtendedMAIA (e-
MAIA) were proposed in [57] to tune the 𝑏, 𝜀 parameters and 𝑏, 𝜀, 𝜙 respectively. These methods work
under modified (truncated) Hamiltonians by minimizing the expectation of the energy error as in Eq.
(3.37).

min E[Δ𝐻̃[𝑘](𝜽, 𝐩)] Δ𝐻̃[𝑘](𝜽, 𝐩) = 𝐻̃[𝑘](𝜽′, p′) − 𝐻̃[𝑘](𝜽, p†) (3.37)

Readers who wish to learn more about these adaptive methods and multi-stage integrators are encour-
aged to read [57, 78], although some notes on the topic will be provided by the end of the chapter.
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Table 3.2: Comparison of Relevant Properties of Hamiltonian-based Samplers

RW-MH HMC GHMC MMHMC

Correlation 3 3 3 3

Irreversibility 7 7 3 3

Importance Sampling 7 7 7 3

Summary – Categorization of Hamiltonian-based MCMC Samplers

The following three Hamiltonian-based sampling methods have been introduced in this work:

• Hamiltonian Monte Carlo (HMC)

• Generalized Hamiltonian Monte Carlo (GHMC) – Improves HMC performance by adding
a partial momentum update across samples, i.e., the additional momenta are not discarded at the
end of each integration process.

• Mix & Match Hamiltonian Monte Carlo (MMHMC) – Improves HMC performance by
adding:

– Partial momentum updates across samples (same as GHMC).

– Usage of truncatedmodifiedHamiltonians 𝐻̃[𝑘]with better conservation under symplec-
tic numerical integrators for improved sampling.

– Importance sampling re-weigthing.

Figure 3.3: Hierarchy of Hamiltonian-basedMonte Carlo Methods

Evaluating the Sampling Quality of Hamiltonian-basedMethods

So far, we have introduced the Hamiltonian Monte Carlo (HMC) method for posterior sampling, as well as
subsequent extensions constructed by adding complexity to enhance the quality of the sampling. However, we
have not yet explored how these enhancements can be quantified appropriately. In this short section below, we
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introduce several reference metrics [51, 57, 79] for assessing the performance of our sampling methodologies
by focusing on the following criteria:

• State space exploration performed by the chain;

• Sampling efficiency— i.e., the ability of the method to produce more uncorrelated samples;

• Convergence to the target distribution 𝜋(𝜽).

The usual metrics for evaluating the sampling quality of our methods are presented below:

1. Acceptance Rate (AR): Measures the ratio of accepted proposals in the Metropolis test. That is:

AR =
𝑁acc
𝑁 (3.38)

2. Potential Scale Reduction Factor (PSRF): Used to assess convergence to the (stationary) target distri-
bution of𝑀-parallel Markov chains [80].

First, we define the within-chain (𝑊) and between-chain (𝐵) variances respectively as:

𝑊 = 1
𝑀

𝛭

∑
𝑚=1

𝜎2𝑚, 𝐵 = 𝑁
𝑀 − 1

𝛭

∑
𝑚=1

(𝜃̄𝑚 − 𝜃̄𝐺)2 (3.39)

where𝑀 is the number of Markov-Chains drawn,𝑁 is the number of samples from the posterior dis-
tribution, 𝜎2𝑚 is the variance of chain𝑚, and 𝜃̄𝑚, 𝜃̄𝐺 are the individual local chain mean and global mean
across the chains, respectively.

Then, the sample variance from all the chains combined is obtained as the weighted average of these two
values:

𝜎̂ = (1 − 1
𝑁)𝑊 + 𝐵

𝑁 (3.40)

which yields:

𝑉 = 𝜎̂ + 𝐵
𝑀𝑁 (3.41)

Finally, the potential scale reduction factor 𝑅 is defined as follows:

𝑅 = √(𝑑 + 3𝑑 + 1)
𝑉
𝑊 (3.42)

where 𝑑 is the number of degrees of freedom of a 𝑡-distribution with mean 𝜃̄𝐺 and variance𝑉 estimated
by the method of moments as:

𝑑 ≈ 2𝑉2

Var(𝑉)
(3.43)

A value of 𝑅 ≈ 1 indicates a good convergence, and the closer to 1 the values are, the better this conver-
gence is. In practice, a value of at least 𝑅 < 1.01 is recommended for achieving convergence to the target
distribution.
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3. Effective Sample Size (ESS): The samples extracted using these Hamiltonian-based algorithms are not
equivalent to i.i.d. samples extracted directly from the target distribution. Hence, we need to define a
way to quantify the efficiency of a sampler in producing independent samples from 𝜋(𝜽).

For instance, in order to measure the sampling efficiency of our Markov-ChainMonte Carlo we can use
the Effective Sample Size (ESS): the number of equivalent i.i.d. samples from the target distribution
our method can generate.

Note: Due to the complexity of properly defining the Effective Sample Size metric — specially in the
context of MMHMC, where we need to account for the importance reweighing in Eq. (3.33) — we
will limit ourselves here to presenting the simplest formulation of the ESS for strictly MCMCmethods
(i.e., without any sort of importance sampling): the Autocorrelation-Based ESS with several stopping
criterion.2

Autocorrelation-Based ESS for MCMC Sampling: The simplest form of ESS estimation for strictly
MCMCmethods is based on the infinite sum of the autocorrelations of the samples as in Eq. (3.44).

ESS = 𝑁

1 + 2
∞

∑
𝑘=1

𝛾𝑘

(3.44)

where 𝛾𝑘 is the sample autocorrelation at lag 𝑘. The following stopping criteria are usually employed in
order to approximate the infinite series above. These methods include:

• Geyer’s Stopping Criteria [81] proposes that the autocorrelation sequence is truncated where
the pairwise sums become non-positive. Because pairwise sums of the elements of that sequence
are positive, any deviations are only possible due to noise.

Let the sums of adjacent pairs of autocovariances be

Γ𝑘 = 𝛾2𝑘 + 𝛾2𝑘+1, ∀𝑘 ∈ [0,𝑁/2] (3.45)

Then,Γ𝑘 is strictly positive anddecreasing (i.e., for irreducible, reversible, stationaryMarkovChains).
Geyer’s criterion yields three possible threshold estimators:

a) Initial Sequence Positive Estimator (ISPE). That is, our threshold𝑚 is the largest integer
such that Γ𝑘 remains strictly positive. This criterion for truncating the infinite sumworks well
most of the times, but beware of cases in which the estimated autocorrelations stays positive
for many lags. That is:

ESS = 𝑁

1 + 2
2𝑚+1

∑
𝑘=1

𝛾𝑘

= 𝑁

−1 + 2
𝑚

∑
𝑘=0

Γ𝑘

(3.46)

2Asof the timeof thiswriting, no comprehensive overviewhasbeenpublishedon the extensive alternativedefinitions and formulations
of the ESS. Therefore, wemight plan to publish such a review, as well as our novel work towards defining a proper ESS metric for
joint Markov-ChainMonte Carlo and Importance Sampling algorithms, in the near future.
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b) Initial Monotone Sequence Estimator (IMSE). Further reducing the “bumps” in the ACF
curve by reducing the estimated Γ𝑖 to theminimumof the preceding ones so that the estimated
sequence is monotone. That is,

Γ𝑘 = min{Γ0, Γ1, … , Γ𝑘−1} (3.47)

This is the implementation used in the software package Stan and the popular Python library
Arviz.

c) Initial Convex Sequence Estimator (ICSE). Even further reducing Γ𝑖 to the greatest con-
vex minorant (GCM).

• From the variance of the estimator:

ESS = 𝑁

1 + 2
𝛮−1

∑
𝑘=1

𝑁 − 𝑘
𝑁 𝛾𝑘

(3.48)

• The infinite sum is often truncated at lag 𝑘when 𝛾𝑘 < 0.05.

• Until correlation switches sign. This method does not estimate the ESS of super-efficient chains
(where ESS > 𝑁) correctly.

In practice, the ESS is usually reported as the ratio to the number of samples𝑁. That is, super-efficient
samplers yield values of the ESS > 1, while ESS = 1means that the samples from the method are i.i.d. in
practice.

4. Monte Carlo Standard Error (MCSE): Moreover, an important performancemetric derived from the
Effective Sample Size is the Monte Carlo Standard Error (MCSE). It measures the variability in the
estimated parameters, indicating the deviation of simulation results from𝑁 samples 𝜃𝑛 and true values
taken to be the estimated mean value 𝜃̄. A lower MCSE implies higher precision and reliability of the
samples, thus more effective convergence to the target distribution.

MCSE = √ 𝜎2

ESS =

1
𝑁 − 1

𝛮

∑
𝑛=1

(𝜃𝑛 − 𝜃̄)2

√ESS
(3.49)

5. IntegratedAutocorrelationTime (IACT): Likewise, the IntegratedAutocorrelationTime (IACT)
can also be defined as the number ofMonteCarlo iterations needed, on average, for an independent sam-
ple to be drawn.

IACT = 𝑁
ESS (3.50)

That is, on average, IACT correlated samples are required in order to reduce the variance of the estimator
𝐼 by the same amount as a single uncorrelated sample.
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Table 3.3: EvaluationMetrics for Estimating the Performance of Hamiltonian-based Sampling Methods

Metric Assesses Equation

PSRF Convergence (3.42)

AR Space Exploration (3.38)

MCSE Variance (3.49)

ESS Sampling Efficiency (3.44)

IACT Sampling Efficiency (3.50)

GRAD-e Sampling Efficiency (3.51)

6. Number ofGradientComputations by Integrator: Additionally, for a givenHamiltonian integrator,
the ratio of thenumber of gradient computations and theESS is also generally regarded as a reliablemetric
for assessing the quality of the estimator:

GRAD-e =
Number of gradient computations

ESS = 𝑘 ⋅ 𝐿̄
ESS (3.51)

where 𝑘 is the stage of the splitting integrator, and 𝐿̄ can either be computed as the average number of
integration steps, or as 𝐿̄ = (𝐿upper + 1)/2.

A comprehensive summary of all these presented metrics can be found in Table 3.3.

AdaptiveMethods forMulti-Stage Splitting Integrators

So far, we have limited our discussion on Hamiltonian numerical integrators to the Verlet/Leapfrog method
in Algorithm 3. However, in practice, the numerical integration of the Hamiltonian equations of motion is
crucial for Hamiltonian-based Monte Carlo methods, since its accuracy and efficiency strongly affect the over-
all performance of the method. The Verlet/Leapfrog integrator is currently the method of choice due to its
simplicity, optimal stability properties and computational efficiency. In this section, we introduce the readers
to the recently proposed family ofMulti-Stage Splitting Integrators (MSSIs) [50, 57, 78, 79] which have shown
promising performance in statistical and molecular simulation applications; and present the s-AIA (Adaptive
Integration Approach in Computational Statistics) [79] algorithm for adaptive tuning of the integration and
sampling parameters.

As a quick remainder to the reader, Hamiltonian Monte Carlo (HMC) is a Markov-Chain Monte Carlo
(MCMC) method for obtaining correlated samples 𝜽𝑖 from a target distribution 𝜋(𝜽) as in Eq. (3.52).

𝜽𝑖 ∼ 𝜋(𝜽) (3.52)

In practice, this is achieved by simulating theHamiltonian dynamics of a system, where theHamiltonian func-
tion is defined as follows:

𝐻(𝜽, 𝐩) = 𝐾(𝐩) + 𝑈(𝜽) = 1
2𝐩

𝛵𝑀−1𝐩 + 𝑈(𝜽) (3.53)
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where 𝐾(𝐩) corresponds to the kinetic energy of the system, and 𝑈(𝜽) to the potential energy, respectively3.
The Hamiltonian potential𝑈(𝜽) is related to the target distribution by Eq. (3.54).

𝑈(𝜽) = − log𝜋(𝜽) + 𝒞 (3.54)

In HMC, both the position 𝜽 and momentum 𝐩 are updated through the numerical integration of the Hamil-
tonian dynamics in Eq. (3.55).

𝜽̇ = 𝐻𝐩(𝜽, 𝐩) = 𝑀−1𝐩, 𝐩̇ = −𝐻𝜽(𝜽, 𝐩) = −𝑈𝜽(𝜽) (3.55)

In practice, the integration of the Hamiltonian dynamics in Eq. (3.55) is performed by resorting to the idea of
splitting. First, we define the split systems below:

(System𝐴) 𝜽̇ = 𝐾𝐩(𝐩) = 𝑀−1𝐩 𝐩̇ = −𝐾𝜽(𝐩) = 0 (3.56)

(System 𝐵) 𝜽̇ = 𝑈𝐩(𝜽) = 0 𝐩̇ = −𝑈𝜽(𝜽) (3.57)

From these systems, we define the solution flows as in Eq. (3.58).

𝜑𝛢𝑡 (𝜽, 𝐩) = (𝜽 + 𝑡𝑀−1𝐩, 𝐩), 𝜑𝛣𝑡 (𝜽, 𝐩) = (𝜽, 𝐩 − 𝑡𝑈𝜽(𝜽)) (3.58)

These flows are often called a position drift and a momentum kick respectively. The integration of the target
dynamics in Eq. (3.55) is carried out by combining drifts and kicks.

Example 3.3.1 (1-Stage Velocity Verlet Integrator). For example, the popular 1-Stage Velocity Verlet integrator:

𝐩 = 𝐩 − 𝜀
2𝑈𝜽(𝜽)

𝜽 = 𝜽 + 𝜀𝑀−1𝐩

𝐩 = 𝐩 − 𝜀
2𝑈𝜽(𝜽)

(3.59)

Can be expressed as a composition of the flows in Eq. (3.58):

Ψ(1−𝑉𝑉)𝜀 = 𝜑𝛣𝜀/2 ∘ 𝜑𝛢𝜀 ∘ 𝜑𝛣𝜀/2 (3.60)

As per the notation used throughout this text, 𝜀 is the length of an integration step, i.e., the step-size.

Avid readers may now realize that the “Leapfrog” integrator we have been discussing so far (see Algorithm 3) is
nothing but the 1-Stage Velocity Verlet in Eq. (3.60) wrapped by two additional half-step momentum kicks at
the beginning and at the end of the integration process.

3Note that the Hamiltonian is separable, as𝛫(𝐩) and𝑈(𝜽) depend exclusively on 𝐩 and 𝜽, respectively.
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Definition 3.3.1 (Multi-Stage Splitting Integrators). Let 𝑘 be a positive integer. We define the family of 𝑘-stage
splitting integrators (with 𝑘 − 1 free parameters) as follows:

Ψ(𝑘)𝜀 = {
𝜑𝛣𝑏1𝜀 ∘ 𝜑

𝛢
𝑎1𝜀 ∘ ⋯ ∘ 𝜑𝛢𝑎𝑘′𝜀 ∘ 𝜑

𝛣
𝑏𝑘′+1𝜀 ∘ 𝜑

𝛢
𝑎𝑘′𝜀 ∘ ⋯ ∘ 𝜑𝛢𝑎1𝜀 ∘ 𝜑

𝛣
𝑏1𝜀 if 𝑘 = 2𝑘′

𝜑𝛣𝑏1𝜀 ∘ 𝜑
𝛢
𝑎1𝜀 ∘ ⋯ ∘ 𝜑𝛣𝑏𝑘′𝜀 ∘ 𝜑

𝛢
𝑎𝑘′𝜀 ∘ 𝜑

𝛣
𝑏𝑘′𝜀 ∘ ⋯ ∘ 𝜑𝛢𝑎1𝜀 ∘ 𝜑

𝛣
𝑏1𝜀 if 𝑘 = 2𝑘′ − 1

(𝑏𝑖, 𝑎𝑗 ∈ ℝ+) (3.61)

where ∘ is the composition of solution flows, and the coefficients 𝑏𝑖, 𝑎𝑗 must satisfy the following:

{
2
𝑘′

∑
𝑖=1

𝑏𝑖 + 𝑏𝑘′+1 = 2
𝑘′

∑
𝑗=1

𝑎𝑗 = 1 if 𝑘 = 2𝑘′

2
𝑘′

∑
𝑖=1

𝑏𝑖 = 2
𝑘′−1

∑
𝑗=1

𝑎𝑗 + 𝑎𝑘′ = 1 if 𝑘 = 2𝑘′ − 1
(3.62)

The integrators in Eq. (3.61) are symplectic as compositions of flows thus leading to a conservation of the
Hamiltonian, and reversible due to their palindromic structure. Likewise, the number of stages 𝑘 is the number
of times the integration algorithm performs an evaluation of gradients𝑈𝜽(𝜽) per step-size 𝜀.

Remark. Evidently, most of the computational cost in HMC arises from gradient evaluations. Since splitting
integrators with different numbers of stages require different numbers of gradient evaluations per step, using a
common value of𝐿 and 𝜀 does not yield fair comparisons. To address this, if 𝐿̂ is the number of gradient evaluations
used by the 1-stage Velocity Verlet method with step size 𝜀, then a 𝑘-stage integrator is run for 𝐿 = 𝐿̂/𝑘 steps of size
𝑘𝜀. Ensuring that all integrators simulate the dynamics over the same time interval 𝐿̂𝜀 and incur the same number
of gradient evaluations.

Example 3.3.2 (2-Stage Splitting Integrators). From the general formulation of the multi-stage Hamiltonian
integrators in Eq. (3.61) we can easily derive the 1-parameter family of 2-stage integrators as follows:

Ψ(2)𝜀 = 𝜑𝛣𝑏1𝜀 ∘ 𝜑
𝛢
𝑎1𝜀 ∘ 𝜑

𝛣
𝑏2𝜀 ∘ 𝜑

𝛢
𝑎1𝜀 ∘ 𝜑

𝛣
𝑏1𝜀 (∵ 𝑘 = 2, 𝑘′ = 1) (3.63)

Likewise, the conditions in Eq. (3.62)must be satisfied:

{
2
𝑘′

∑
𝑖=1

𝑏𝑖 + 𝑏𝑘′+1 = 1 ⟹ 2𝑏1 + 𝑏2 = 1 ⟹ 𝑏2 = 1 − 2𝑏1

2
𝑘′

∑
𝑗=1

𝑎𝑗 = 1 ⟹ 2𝑎1 = 1 ⟹ 𝑎1 =
1
2

(3.64)

Moreover, because all coefficients must be inℝ+:

𝑏2 > 0 ⟹ 1 − 2𝑏1 > 0 ⟹ 𝑏1 <
1
2 (3.65)

That is: 𝑎1 = 1/2, 𝑏1 ∈ (0, 1/2), 𝑏2 = 1 − 2𝑏1. Therefore, the integrators can be rewritten as (note that for
simplicity in this case 𝑏 = 𝑏1 ∈ (0, 1/2)):

Ψ(2)𝜀 = 𝜑𝛣𝑏𝜀 ∘ 𝜑𝛢𝜀/2 ∘ 𝜑
𝛣
(1−2𝑏)𝜀 ∘ 𝜑𝛢𝜀/2 ∘ 𝜑

𝛣
𝑏𝜀 (3.66)
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Table 3.4: Special Cases of 2- & 3-Stage Splitting Integrators

Integrator Nº of Stages (𝑘) Coefficients

1-Stage Velocity Verlet (VV1) 1 -

2-Stage Velocity Verlet (VV2) 2 𝑏 = 1/4

2-Stage BCSS (BCSS2) 2 𝑏 = 0.211781

2-Stage Minimum-Error (ME2) 2 𝑏 = 0.193183

3-Stage Velocity Verlet (VV3) 3 𝑎 = 1/3, 𝑏 = 1/6

3-Stage BCSS (BCSS3) 3 𝑎 = 0.296195, 𝑏 = 0.118880

3-Stage Minimum-Error (ME3) 3 𝑎 = 0.290486, 𝑏 = 0.108991

As the reader may realize, if we set 𝑏 = 0, we get the 1-stage Velocity Verlet integrator in Eq. (3.60).

Example 3.3.3 (3-Stage Splitting Integrators). Likewise, the 2-parameter family of 3-stage integrators can be
derived as well in the same fashion:

Ψ(3)𝜀 = 𝜑𝛣𝑏1𝜀 ∘ 𝜑
𝛢
𝑎1𝜀 ∘ 𝜑

𝛣
𝑏2𝜀 ∘ 𝜑

𝛢
𝑎2𝜀 ∘ 𝜑

𝛣
𝑏2𝜀 ∘ 𝜑

𝛢
𝑎1𝜀 ∘ 𝜑

𝛣
𝑏1𝜀 (∵𝑘 = 3, 𝑘′ = 2) (3.67)

Then, we take a look at the constraints in Eq. (3.62):

{
2
𝑘′

∑
𝑖=1

𝑏𝑖 = 1 ⟹ 2(𝑏1 + 𝑏2) = 1 ⟹ 𝑏2 =
1
2 − 𝑏1

2
𝑘′−1

∑
𝑗=1

𝑎𝑗 + 𝑎𝑘′ = 1 ⟹ 2𝑎1 + 𝑎2 = 1 ⟹ 𝑎2 = 1 − 2𝑎1
(3.68)

Moreover, because all coefficients must be inℝ+, we can rewrite the coefficients as 𝑎, 𝑏 ∈ (0, 1/2), 𝑎2 = 1−2𝑎, 𝑏2 =
1/2 − 𝑏. Therefore, the family of integrators can be expressed as:

Ψ(3)𝜀 = 𝜑𝛣𝑏𝜀 ∘ 𝜑𝛢𝑎𝜀 ∘ 𝜑𝛣(1/2−𝑏)𝜀 ∘ 𝜑
𝛢
(1−2𝑎)𝜀 ∘ 𝜑𝛣(1/2−𝑏)𝜀 ∘ 𝜑𝛢𝑎𝜀 ∘ 𝜑

𝛣
𝑏𝜀 (3.69)

Finally, Table 3.4 provides a comprehensive summary of some interesting specific cases of 2-stage and 3-stage
splitting integrators.4

Although the use of thesemulti-stage splitting integrators has shown improved conservation of theHamilto-
nians over the traditional Verlet/Leapfrog method, they are typically more unstable and thus generally benefit
from adaptivemethods for parameter tuning and selection. For this reason, theAdaptive Integration Approach
(AIA) [77] introduced an automatic selectionprocess for the bestHamiltoniannumerical integrator in practical
scenarios. Subsequent improvements such asModifiedAIA (MAIA), and Extended-MAIA (e-MAIA) quickly
garnered attention due to their boost in performance. Finally, [79] introduced a variation on these methods
4The derivation of the coefficients can be found in [79], but we limit ourselves here to presenting these values as they will be useful in
the s-AIAmethod.
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for its application in computational statistics: s-AIA. For an in-depth explanation of the method, we refer the
readers to [79]. However, we provide the full pseudocode in Algorithm 6 as s-AIA, readily implemented in
pyHaiCS, will be used in practice later to select the optimal integration parameters.

Derivation of 𝜌𝑘(𝜀, 𝑏)

Given a𝑘-stagepalindromic splitting integratorΨ𝜀 (𝜀 is the integration step-size), it acts on a configuration (𝜃𝑖, 𝑝𝑖)
at the 𝑖-th iteration as:

Ψ𝜀(
𝑞𝑖
𝑝𝑖
) = (

𝑞𝑖+1
𝑝𝑖+1

) = (
𝐴𝐳𝜀 𝐵𝐳𝜀
𝐶𝐳𝜀 𝐷𝐳𝜀

)(
𝑞𝑖
𝑝𝑖
) (3.70)

for suitablemethod-dependent coefficients𝐴𝐳𝜀 , 𝐵𝐳𝜀 , 𝐶𝐳𝜀 , 𝐷𝐳𝜀 (𝐳 = {𝑏𝑖, 𝑎𝑗} is the set of𝑘−1 integration coefficients).
Then:

𝜌𝑘(𝜀, 𝐳) =
(𝐵𝐳𝜀 + 𝐶𝐳𝜀 )

2

2(1 − 𝐴𝐳𝜀
2)

(3.71)

Special Cases: In the particular cases where 𝑘 = 2, 3, the expressions for 𝜌𝑘(𝜀, 𝑏) are given by Eqs. (3.72) and
(3.73), respectively.

𝜌2(𝜀, 𝑏) =
𝜀4(2𝑏2(12 − 𝑏)𝜀

2 + 4𝑏2 − 6𝑏 + 1)
2

8(2 − 𝑏𝜀2)(2 − (12 − 𝑏)𝜀
2)(1 − 𝑏(12 − 𝑏)𝜀

2)
(3.72)

𝜌3(𝜀, 𝑏) =
𝜀4[−3𝑏4 + 8𝑏3 − 19/4𝑏2 + 𝑏 + 𝑏2𝜀2(𝑏3 − 5/4𝑏2 + 𝑏/2 − 1/16) − 1/16]2

2(3𝑏 − 𝑏𝜀2(𝑏 − 1/4) − 1)(1 − 3𝑏 − 𝑏𝜀2(𝑏 − 1/2)2)(−9𝑏2 + 6𝑏 − 𝜀2(𝑏3 − 5/4𝑏2 + 𝑏/2 − 1/16) − 1) (3.73)

For 3-stage integrators the pairs (𝑏, 𝑎) are restricted, for stability reasons, to those that satisfy:

6𝑎𝑏 − 2𝑎 − 𝑏 + 1
2 = 0 (3.74)
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Algorithm 6 Adaptive Integration Approach in Computational Statistics (s-AIA)
1: Input:

𝑁tune: Number of Monte Carlo Samples (Tuning Stage)
𝑁check: Number of Monte Carlo Samples for ARCheck (Tuning Stage)
𝑁burn-in: Number of Monte Carlo Samples (Burn-In Stage)
𝑁prod: Number of Monte Carlo Samples (Production Stage)
𝐷: Dimensionality of the Data
𝑘: 𝑘-Stage of the Integrator (Usually 2 or 3)
𝛼target: Targeted Acceptance Rate (Usually 𝛼target = 0.92 as in [79])
𝜉: Sensibility (> 0)
𝛿𝜀: Step-Size Increment (> 0)
𝐼𝜔: Frequencies Calculation (1 = yes, 0 = no)
𝑀: Mass Matrix

2: Output:

{𝜽𝑛}𝛮𝑛=1: Samples from the Target Distribution (i.e., the Trajectory)

3: 1) Tuning Stage:
4: Initialize Tuning Parameters: 𝑁 = 𝑁tune, 𝜀 = 1/𝐷, 𝐿 = 1,Ψ𝜀 = Ψ(𝑉𝑉)𝜀

5: 𝜀tuned = s-AIA-Tuning(𝑁,𝑁check, 𝛼target, 𝜉, 𝜀, 𝛿𝜀, 𝐿,𝑀,Ψ𝜀) – See Algorithm 7
6: 2) Burn-In Stage:
7: Initialize Burn-In Parameters: 𝑁 = 𝑁burn-in, 𝜀 = 𝜀tuned, 𝐿 = 1, Ψ𝜀 = Ψ(𝑉𝑉)𝜀

8: {𝜀̄prod𝑖}
𝛮prod
𝑖=1 , {𝜀prod𝑖}

𝛮prod
𝑖=1 = s-AIA-Burn-In(𝑁, 𝐼𝜔, 𝐷, 𝜀, 𝐿,𝑀,Ψ𝜀) – See Algorithm 8

9: Compute Optimal Integration Coefficients {𝑏𝑘opt𝑖}
𝛮prod
𝑖=1 such that:

𝑏𝑘opt𝑖 = argmin
𝑏∈(𝑏MEk,𝑏VVk)

( max
0<𝜀<𝜀̄prod𝑖

𝜌𝑘(𝜀, 𝑏))

See Table 3.4 for the values of 𝑏MEk, 𝑏VVk in the cases where 𝑘 = 2, 3, and Section 3.3 for
the complete derivation of 𝜌𝑘(⋅).

10: 3) Production Stage:
11: At each iteration, 𝐿prod𝑖 is drawn from:

𝐿prod𝑖 ∼ 𝒰(1, 2𝐿̄ − 1), 𝐿̄𝜀 = 𝐿̄𝑘 = 𝜏𝐷 (usually, 𝐿̄𝑘 = 𝐷)

12: Initialize Prod. Parameters: 𝑁 = 𝑁prod, 𝜀 ∈ {𝜀prod𝑖}
𝛮prod
𝑖=1 , 𝐿 ∈ {𝐿prod𝑖}

𝛮prod
𝑖=1 , Ψ𝜀 = Ψ(s-AIA𝑘)𝜀

13: RunHMC(𝑁prod, 𝜀prod𝑖, 𝐿prod𝑖,𝑀,Ψ𝜀)

35



BayesianModeling of Tamoxifen Resistance in Breast Cancer Cells

Algorithm 7 Tuning Stage of s-AIA (s-AIA-Tuning)
1: Input:

𝑁tune: Number of Tuning Iterations
𝑁check: Number of Iterations for ARCheck
𝛼target: Targeted Acceptance Rate
𝜉: Sensibility
𝜀: Step-Size
𝛿𝜀: Step-Size Increment
𝐿: Number of Integration Steps (i.e., Trajectory Length)
𝑀: Mass Matrix
Ψ𝜀: Hamiltonian Numerical Integrator

2: Output:

𝜀tuned: Tuned Step-Size

3: Initialize 𝜀tuned = 𝜀,𝑁 = 𝑁tot = 𝑁acc = 0
4: while𝑁tot + 𝑁check < 𝑁tune do
5: RunHMC(𝑁check, 𝜀tuned, 𝐿,𝑀,Ψ𝜀)
6: 𝑁 = 𝑁 +𝑁check

7: 𝑁acc =Number of Acceptances Over the Last𝑁 Iterations
8: AR = 𝑁acc/𝑁
9: ifAR < 𝛼target − 𝜉 then
10: 𝜀tuned = 𝜀tuned − 𝛿𝜀
11: 𝑁 = 0
12: else ifAR > 𝛼target + 𝜉 then
13: 𝜀tuned = 𝜀tuned + 𝛿𝜀
14: 𝑁 = 0
15: end if
16: 𝑁tot = 𝑁tot + 𝑁check

17: end while
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Algorithm 8 Burn-In Stage of s-AIA (s-AIA-Burn-In) – Part 1
1: Input:

𝑁burn-in: Number of Burn-In Iterations
𝐼𝜔: Frequencies Calculation (1 = yes, 0 = no)
𝐷: Dimensionality of the Data
𝜀: Step-Size
𝐿: Number of Integration Steps (i.e., Trajectory Length)
𝑀: Mass Matrix
Ψ𝜀: Hamiltonian Numerical Integrator

2: Output:

{𝜀̄prod𝑖}
𝛮prod
𝑖=1 : Set of Randomized Dimensionless Step-Sizes

{𝜀prod𝑖}
𝛮prod
𝑖=1 : Set of Randomized Production Step-Sizes

3: RunHMC(𝑁burn-in, 𝜀, 𝐿,𝑀,Ψ𝜀)
4: During the simulation, at each step 𝜁:

5: Find eigenvalues 𝜆(𝜁)𝑗 of the Hessian matrix𝐻(𝜁)
𝑖,𝑗 = 𝜕2𝑈(𝜽(𝜁))

𝜕𝜃(𝜁)𝑖 𝜕𝜃(𝜁)𝑗
, 𝑖, 𝑗 = 1, … ,𝐷

6: Compute Frequencies: 𝜔(𝜁)𝑗 = √𝜆(𝜁)𝑗 , 𝑗 = 1, … ,𝐷

7: Average Frequencies: 𝜔𝑗 =
1

𝑁burn-in

𝛮burn-in

∑
𝜁=1

𝜔(𝜁)𝑗

8: 𝜔̃ = max𝜔𝑗
9: 𝑁acc =Number of Acceptances Over the Last𝑁 Iterations
10: AR = 𝑁acc/𝑁burn-in

11: if (𝐼𝜔 == 0) then

12: 𝑆 = max(1, 2𝜔̃𝜀
6

√
2𝜋(1 − AR)2

𝐷 )

13: if 𝑆 ≤ 2 then
14: Fitting Factor: 𝑆𝑓 = 𝑆

15: Stability Limit: 0 < 𝜀 < 𝑆𝐿 = 2𝑘
𝑆𝑓𝜔̃

, 𝑘 = 1, 2, 3, …

16: Compute {𝜀prod𝑖}
𝛮prod
𝑖=1 such thatℛ(𝜀prod) ≤ ℛ(𝑆𝐿), whereℛ(⋅) is a randomization scheme.

17: Compute Dimensionless Step-Sizes: {𝜀̄prod𝑖}
𝛮prod
𝑖=1 , where:

𝜀̄prod𝑖 = {
2𝜀𝑖
𝜀

6

√
2𝜋(1 − AR)2

𝐷 if 𝑆 > 1

𝜔̃𝜀𝑖 otherwise

18: end if
19: end if
20: // Continues in Part 2...
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Algorithm 8 Burn-In Stage of s-AIA (s-AIA-Burn-In) – Part 2
1: if (𝐼𝜔 == 1) or (𝑆 > 2) then

2: 𝑆𝜔 = max(1, 2𝜀
6
√√√

√

2𝜋(1 − AR)2

∑𝐷
𝑗=1 𝜔

6
𝑗

)

3: Compute Std. Deviation of the Frequencies: 𝜎𝜔 =
√∑

𝐷
𝑗=1(𝜔𝑗 − 𝜔̄)

2

𝐷
4: if 𝜎𝜔 ≤ 1 then
5: Fitting Factor: 𝑆𝑓 = 𝑆𝜔

6: Stability Limit: 0 < 𝜀 < 𝑆𝐿 = 2𝑘
𝑆𝑓𝜔̃

, 𝑘 = 1, 2, 3, …

7: Compute {𝜀prod𝑖}
𝛮prod
𝑖=1 such thatℛ(𝜀prod) ≤ ℛ(𝑆𝐿), whereℛ(⋅) is a randomization scheme.

8: Compute Dimensionless Step-Sizes: {𝜀̄prod𝑖}
𝛮prod
𝑖=1 , where:

𝜀̄prod𝑖 = {

2𝜔̃𝜀𝑖
𝜀

6
√√√

√

2𝜋(1 − AR)2

∑𝐷
𝑗=1 𝜔

6
𝑗

if 𝑆𝜔 > 1

𝜔̃𝜀𝑖 otherwise

9: else if 𝜎𝜔 > 1 then

10: Stability Limit: 0 < 𝜀 < 𝑆𝐿 = 2𝑘
𝑆𝜔(𝜔̃ − 𝜎𝜔)

, 𝑘 = 1, 2, 3, …

11: Compute {𝜀prod𝑖}
𝛮prod
𝑖=1 such thatℛ(𝜀prod) ≤ ℛ(𝑆𝐿), whereℛ(⋅) is a randomization scheme.

12: Compute Dimensionless Step-Sizes: {𝜀̄prod𝑖}
𝛮prod
𝑖=1 , where:

𝜀̄prod𝑖 = {

2(𝜔̃ − 𝜎𝜔)𝜀𝑖
𝜀

6
√√√

√

2𝜋(1 − AR)2

∑𝐷
𝑗=1 𝜔

6
𝑗

if 𝑆𝜔 > 1

(𝜔̃ − 𝜎𝜔)𝜀𝑖 otherwise

13: end if
14: end if

3.4 RelatedWork

The application of Bayesian methods in clinical studies has been extensively explored in the literature. For in-
stance, [82] proposes a dynamic stochastic model for predicting breast cancer survival in large population co-
horts, whereas [83] introduces a simple model for screening breast cancer patients, or [84] presents a novel
Hybrid Bayesian Network to predict survival in HER2+ breast cancer patients. Similarly, [85, 86] present hi-
erarchical Bayesian approaches for predicting prognostic survival outcomes in the context of pancreatic cancer.
Most recently, Bayesianmethods have been further used to study the limitations of hormone-based therapies as
breast cancer treatments in order to develop more favorable solutions [87–89].

In the context of breast cancer therapy research — more specifically of cell-line genomic studies — several
genes (or families of them) have been identified as potential biomarkers responsible for the resistance to these
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endocrine treatments. For instance, the SOX2-SOX9 [33, 90, 91] and Interleukin [92] families, Notch [93, 94]
or Wnt [33] pathways and cell proliferation [95–97] have often been validated through clinical omics samples
demonstrating the potential of these methods for identifying prognostic biomarkers. Furthermore, as men-
tioned earlier, the development of prognostic signatures such as Mammaprint [36] and OncotypeDX [35] has
been crucial for the identification of high-risk breast cancer patients. Likewise, genetic signatures specifically
related to the problem of resistance to hormone therapy in breast cancer have been identified most recently
[98–102]. More specifically, in the context of tamoxifen resistance, [103–105] identify key individual biomark-
ers in the resistance development process, [106] proposes a 5-gene signature, and finally [37] proposes a 6-gene
signature by combining patient and cell-line RNA-seq data — using a Simulated Annealing (SA) algorithm
coupled with a Bayesian logistic regression model with a single per-signature global score — to predict resis-
tance to hormone-based therapies. It is from this last work that we take inspiration for the development of our
Bayesian modeling framework.

Finally, we believe that it is worth commenting on the limitations of the current state-of-the-art methods in
the field. As we have seen, the development of prognostic signatures for breast cancer resistance to hormone-
based therapies has been a topic of interest for many years. However, the current methods are limited in their
ability to provide a comprehensive understanding of the underlying biological mechanisms that lead to this
phenomenon. In particular, the current methods are based on statistical models that do not take into account
the underlying biological or molecular functions, and can therefore be limited in their ability to predict re-
sistance in new patients. As a matter of fact, some studies suggest that the current existing methods may be
yielding suboptimal signatures that seem significant at first glance but are not actually meaningful in order to
determine effective, and biologically coherent, prognostic signatures [107–109]. This is mainly due to spurious
correlations with proliferation geneticmarkers [108], poor validation schemes, or a high number of genes being
considered in the signature [109]. Because of these reasons, we have decided to approach the problem from a
different perspective—without relying on the identification of a specific set of genes that conform a signature
—, by developing a Bayesianmodeling framework that can provide amore comprehensive understanding of the
underlying biological mechanisms that drive resistance to hormone-based therapies in breast cancer. Finally, a
summary of the related work described above can be found in Table 3.5.5

5Please note that due to the broad nature of the topic, and because an extensive overview of Bayesian statistical modeling andMonte
Carlo posterior sampling methods has already been provided throughout this whole chapter, we have decided to focus on the most
relevant work that is directly related to the study of potential genetic biomarkers for resistance to hormone-based therapies in breast
cancer. These references provide a comprehensive overviewof the state-of-the-art in the field and are a good starting point for further
research, as well as for comparing our results with the existing genetic signatures.
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Table 3.5: Summary of RelatedWork in BayesianMethods and Breast Cancer Research

Authors Contribution Reference

Teng et al. (2022) Dynamic Bayesian model for breast cancer survival pre-
diction in large population cohorts

[82]

Huang et al. (2018) Bayesian simulation model for breast cancer screening,
incidence, treatment, and mortality

[83]

Su et al. (2023) Novel prognosticHybrid BayesianNetwork formodel-
ing HER2+ breast cancer survival

[84]

Chu et al. (2022), Smith et
al. (2014)

Hierarchical Bayesian approaches for predicting prog-
nostic survival outcomes in pancreatic cancer

[85, 86]

Wang et al. (2022), He et al.
(2024), Jiang et al. (2024)

Bayesian methods to study limitations of hormone-
based therapies in breast cancer

[87–89]

Piva et al. (2014), Au-
rrekoetxea et al. (2024),
Domenici et al. (2019)

Identification of SOX2-SOX9 family as potential
biomarkers for resistance to endocrine treatments

[33, 90, 91]

Sarmiento et al. (2020) Interleukin family as potential biomarkers for resistance
to endocrine treatments

[92]

Magnani et al. (2013),
Simoes et al. (2015)

Notch pathway as potential biomarker for resistance to
endocrine treatments

[93, 94]

Piva et al. (2014) Wnt pathway as potential biomarker for resistance to
endocrine treatments

[33]

Gao et al. (2014), Huang
et al. (2011), Palafox et al.
(2022)

Cell proliferation as potential biomarker for resistance
to endocrine treatments

[95–97]

Van’t Veer et al. (2002) Development of Mammaprint prognostic signature [36]

Paik et al. (2004) Development of OncotypeDX prognostic signature [35]

Harrod et al. (2022), Xia
et al. (2022), Miller et al.
(2015), Kang et al. (2024),
Jin et al. (2024)

Identification of genetic signatures related to resistance
to hormone therapy in breast cancer

[98–102]

Hermawan et al. (2020),
Mihaly et al. (2013), Wang
et al. (2021)

Identification of key individual biomarkers in tamox-
ifen resistance development process

[103–105]

Rahem et al. (2020) Proposal of a 5-gene signature for tamoxifen resistance [106]

Parga-Pazos et al. (2024) Proposal of a 6-gene signature for tamoxifen resistance
using Bayesian regression models

[37]

Manjang et al. (2021),
Venet et al. (2011), Goh et
al. (2018)

Critique of current limitations of prognostic cancer ge-
netic signatures

[107–109]
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4 BayesianModeling of Tamoxifen
Resistance inMCF7 Cells

“Today’s posterior distribution is tomorrow’s prior.”

∼D. V. Lindley, Bayesian Statistics: A Review (1972) Ch. 1 [110]

In this chapter, we describe the methodologies deployed to model the genetic resistance of MCF7 cells to en-
docrine therapy, more specifically, tamoxifen treatment. We begin by discussing the available multi-source ge-
netic data — including cell-line and patient RNA-seq data — for the study of tamoxifen resistance in MCF7
cells. We then discuss the pre-processing and statistical analysis of genetic sequencing data, more specifically,
the process of Differential Expression Analysis (DEA) for identifying genes that are differentially expressed be-
tween tamoxifen-resistant and tamoxifen-sensitive cells. We then describe the integration of cell-line and patient
RNA-seq data for genetic biomarker identification which is crucial for the development of predictive models
for tamoxifen resistance in cells where data is scarce and high-dimensional. Likewise, we introduce pyHaiCS,
a Python library for Hamiltonian-based Monte Carlo methods tailored towards practical applications in com-
putational statistics. Finally, we discuss the different Bayesianmodels deployed for the study of tamoxifen resis-
tance in MCF7 cells, including Bayesian Logistic Regression and other point-estimate resistance models.

The methodologies discussed in this chapter are aimed at providing a comprehensive framework for under-
standing and predicting tamoxifen resistance in MCF7 cells. By leveraging Bayesian modeling techniques, we
aim to not only identify key genetic biomarkers associated with resistance but also to develop robust predictive
models that can be used in clinical settings for predicting prognostic outcomes in breast cancer patients un-
dergoing endocrine therapy. Likewise, the usage of explainability techniques, such as SHAP values, allows for
a more nuanced understanding of the underlying genetic mechanisms driving tamoxifen resistance in MCF7
cells. Finally, we emphasize how the methodologies discussed in this chapter are generalizable to other cancer
types and drug resistance mechanisms. By integrating cell-line and patient RNA-seq data, we can develop ro-
bust predictivemodels that are both interpretable and generalizable, making them valuable tools for researchers
and practitioners in the field of cancer research and bioinformatics.

4.1 AvailableMulti-Source Genetic Data

We begin by discussing the available genetic data for our study of tamoxifen resistance in MCF7 cells [111].
The data used in this study derives frommultiple sources. On the one hand, we have cell-line RNA-seq data for
MCF7CTRLandMCF7TamRcells as controls for ER+ breast cancer and resistance to tamoxifen, respectively.
These cells were obtained from the American Type Culture Collection (ATCC) and were cultured in Dul-
becco’s Modified Eagle Medium (DMEM) supplemented with 8% fetal bovine serum (FBS) and 1% penicillin-
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Figure 4.1: Distribution of Tamoxifen Responses in TCGA-BRCA Patients

streptomycin [33]. The MCF7 CTRL cells were treated with dimethyl sulfoxide (DMSO) as a control, while
theMCF7TamRcellswere exposed to tamoxifen for 6months to induce resistance. The cell-lineRNA-seq data
consists of gene expression profiles for MCF7 CTRL and MCF7 TamR cells, which were obtained using the
Illumina HiScan-SQ platform [33, 91]. The sequencing was done entirely at CIC-bioGUNE, where the Can-
cerHeterogeneity Lab handled the library preparation, and the Genomics Platform performed the sequencing.
Moreover, each cell line was sequenced in triplicate to ensure reproducibility and reliability of the results.

On the other hand, we have transcriptomic and clinical records for breast cancer patients from the publicly
available TCGA-BRCA (The Cancer Genome Atlas Breast Invasive Carcinoma) database [112]. The TCGA
database contains multi-omics data for over 30 cancer types, including breast cancer. Specifically, the patient
RNA-seq data consists of gene expression profiles for breast cancer patients undergoing endocrine therapy, in-
cluding tamoxifen treatment. As such, the clinical records include informationonpatient demographics, tumor
characteristics, treatment regimens, and survival outcomes. In this case, the data contains detailed clinical and
RNA-seq (IlluminaGA_RNASeqV2) data collected from more than 1000 breast cancer patients. However,
only around 200 patients were ER+ and underwent tamoxifen endocrine therapy, making the data relatively
scarce. Moreover, within these patients, only a small subset of 37 patients had both RNA-seq and survival data
available, further limiting the sample size for our study. Regarding the distribution of outcomes in the patient
data, around 30% of patients were classified as tamoxifen-resistant, while the remaining 70% were classified as
tamoxifen-sensitive based on their survival outcomes (see Figure 4.1).

As a summary, the criteria followed for the selection of patients in the TCGA database were as follows:

1. Patients with available RNA-seq data.

2. Patients diagnosed with ER+ breast cancer.

3. Patients who underwent tamoxifen endocrine therapy for more than 2 years.

4. Patients with available survival data. That is, the persistence or disappearance of the tumor, the appear-
ance of a recurrence or metastatic event or the eventual death of the patient.
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Figure 4.2: Pre-processingWorkflow for RNA-seq Data (Diagram Extracted from this Post)

As a final note on the data, it is important to mention that, in the case of the TCGA dataset, the resistance
to the treatment is not explicitly specified in most clinical records. However, it can be inferred in terms of the
response to the treatment and a worsening of the patient’s condition even after a treatment considered to be
effective. In this case, we received theTCGAdata used in [37], and the resistance classificationwas already done.
For more information on the process for classifying patients as tamoxifen-resistant or tamoxifen-sensitive, we
refer the reader to the original source [37] and his thesis [113].

4.2 Pre-Processing & Statistical Analysis of Genetic Sequencing
Data

As stated above, RNA-sequencing data is at the absolute core of our study. This data is used to identify genes
that are differentially expressed between tamoxifen-resistant and tamoxifen-sensitive MCF7 cells. The process
of identifying these genes is known asDifferential Expression Analysis (DEA). DEA is a statistical method
used to identify genes that are differentially expressedbetween twoormore conditions, such as treatment groups
or disease states. In our case, we will apply this procedure first to each subset of data— i.e., cell-line and patient
RNA-seq data — separately, and then we will integrate the results between the two sources of data. The goal
is to identify genes that are differentially expressed between tamoxifen-resistant and tamoxifen-sensitiveMCF7
cells, as well as between tamoxifen-resistant and tamoxifen-sensitive breast cancer patients; and extract those
significant geneswhich are differentially expressed in the same direction in both cell-line and patient data. These
genes will serve as potential biomarkers for tamoxifen resistance in MCF7 cells and breast cancer patients.

Although this text does not intend to delve into the technical details of DEA, it is important tomention that
the process involves several steps, including data pre-processing, normalization, quality control, and statistical
analysis. For the interested reader, we recommend the following resources for a more in-depth understanding
of DEA [114–120] and also [121].
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4.2.1 Pre-Processing Steps of RNA-seq Data

The pre-processing of RNA-seq data is a crucial step in order to convert raw sequencing reads into gene ex-
pression profiles that can be used for DEA. Generally, the workflow for DEA typically involves the following
pre-processing steps (summarized in Figure 4.2):

1. Reading of Raw Sequencing Data: The first step is to read the raw sequencing data, which is typi-
cally stored in FASTQC format. This data contains the raw sequences of nucleotides obtained from the
sequencing machine, as well as quality scores for each base call.

2. Quality Control: The next step is to perform quality control on the raw sequencing data. This involves
checking the quality scores of the base calls, as well as identifying and removing low-quality reads.

3. Trimming and Filtering: After quality control, the next step is to trim and filter the raw sequencing
data. This involves removing adapter sequences, low-quality bases, and other artifacts that may affect the
accuracy of the gene expression profiles.

4. Alignment: Once the raw sequencing data has been pre-processed, the next step is to align the reads to
a reference genome. This involves mapping the reads to the genome in order to determine the location
of each read. Themost common alignment tools used for RNA-seq data is the STAR aligner [122]. The
alignment process is illustrated below in Figure 4.3.

Figure 4.3: Illustration of the GeneMapping/Alignment Process (Source)

5. Quantification: After alignment, the next step is to quantify the gene expression levels. This involves
counting the number of reads that align to each gene in the reference genome. The most common tools
used for quantification are HTSeq [123] and featureCounts [124]. These tools take as input the align-
ment file and a gene annotation file, and output a count matrix that contains the number of reads that
align to each gene in each sample. This is commonly referred to as the gene count matrix, which is used
as input for the Differential Expression Analysis (DEA) workflow in the following section.

After the pre-processing steps, the gene count matrix is used as input for the following steps in the DEA work-
flow, which involves statistical analysis to identify genes that are statistically differentially expressed between two
or more cohorts. To put things into perspective, the gene count matrix usually consists of tens of thousands
of genes (usually around 20,000-30,000) and hundreds of samples (sequenced cell-lines or patient samples). As
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Figure 4.4: Differential Expression Analysis (DEA)Workflow (Diagram Extracted from this Post)

such, the DEA process is computationally intensive and highly-dimensional, thus methods for reducing the di-
mensionality of the data are often employed to improve the efficiency and accuracy of the analysis ranging from
extracting the most significant genes to the use of machine learning techniques for feature selection. In our
case, we will focus on the identification of genes that are commonly differentially expressed between tamoxifen-
resistant and tamoxifen-sensitive MCF7 cells, as well as between tamoxifen-resistant and tamoxifen-sensitive
breast cancer patients.

Likewise, some considerations must be taken into account when performing sequencing of RNA data. For
instance, the read length refers to the length of the nucleotide sequences obtained from the sequencingmachine.
Longer read lengths are generally preferred as they provide more information about the gene expression levels.
Conversely, the sequencing depth refers to the number of reads obtained for each sample. Higher sequencing
depths are generally preferred as they provide more accurate estimates of gene expression levels. Finally, due
to the high experimental noise in the process of sequencing RNA data, it is important to perform replicates.
Replicates involve sequencing the same sample multiple times to ensure reproducibility and reliability of the
results. In our case, the cell-lineRNA-seq data was sequenced in triplicate for each sample. For amore extensive
commentary on so-called good practices for dealing with RNA-seq data, we highly recommend readers check
[116], where a marvelous step-by-step guide is provided for approaching the challenging processes related to
experimental design and quality control.

4.2.2 Statistical Analysis of RNA-seq Data

Once the gene count matrix has been obtained, the next step is to performDifferential Expression Analysis
(DEA) to identify genes that are differentially expressed in a statistically significant manner. In the context of
our study, we are interested in identifying genes that are differentially expressed between 1) tamoxifen-resistant
and tamoxifen-sensitive MCF7 cells, and 2) tamoxifen-resistant and tamoxifen-sensitive breast cancer patients.
The DEA process involves several steps summarized in Figure 4.4 and detailed below:
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1. Count Matrix Pre-Processing: The first step in the DEA process is to pre-process the gene count
matrix. This mainly involves dealing withmissing entries of data and filtering out genes with low expres-
sion levels. Missing records can be removed or imputed using the usual roaster of techniques, such as
mean/median imputation, univariatemethods, or by usingmore advancedmultivariate approaches such
as MICE [125] or missForest [126]. Internally, these methods infer the missing entries based on the
observed data by iteratively estimating and filling missing values based on observed relationships within
the dataset. MICE uses a sequential approach where each variable with missing values is modeled as a
function of other variables, typically using regression models, in a chained iterative process until conver-
gence. In the same fashion, MissForest employs random forest predictors to predict missing values by
leveraging the interactions between variables. Luckily, in our case, the gene count matrix is complete,
and no missing data is present in either the cell-line or patient RNA-seq data. Likewise, genes with low
expression levels can be filtered out using a threshold value, such as 30 in our case. To contextualize how
important this simple step is, in the case of the TCGA dataset, applying this sort of naive filtering lowers
the number of genes from 36,791 to 24,344.

2. Normalization: The next step in the DEA process is to normalize the gene count matrix. Normaliza-
tion is a crucial step in RNA-seq data analysis as it corrects for differences in sequencing depth and gene
length between samples. Without normalization, the interpretation of gene expressions becomes un-
fathomable, as differences in counts— e.g., emerging from technical variability—might be erroneously
attributed to nonexistent biological differences. In order to ensure that gene expression levels are compa-
rable between samples, several normalizationmethods have been proposed in the literature [127]. These
methods are summarized in Table 4.11.

Generally, let 𝐾𝐺×𝑆 be the gene count matrix, where 𝐺 is the number of genes and 𝑆 is the number of
samples. Each element𝐾𝑖𝑗 represents the raw count of reads mapped to gene 𝑖 in sample 𝑗. The goal of
normalization is to transform𝐾 into a normalized count matrix𝑁 such that the gene expression levels
are comparable across samples. In practice, this is accomplished by dividing each count by a scaling factor
𝑠𝑗 , which is calculated based on the total number of reads in each sample:

𝑁𝑖𝑗 =
𝐾𝑖𝑗
𝑠𝑗

(4.1)

In our case, we will use the Relative Log Expression (RLE) method for normalization introduced
in [132]. Originally proposed for the normalization of microarray data in the DEseq package, the RLE
method has been adapted for RNA-seq data and is widely used in the field. TheRLEmethod normalizes
the gene count matrix by first computing the geometric mean for each gene across all samples, and then
scaling each sample by the median of the values of the ratios of sample counts as in Eq. (4.2).

𝑠𝑗 = median
𝑖∈𝐺

(
𝐾𝑖𝑗

(∏𝑆
𝑘=1𝐾𝑖𝑘)

1/𝑆 ) (4.2)

1Please note that normalization here refers to the process of scaling the gene count matrix to ensure that gene expression levels are
comparable across samples, not to be confused with the normalization of the data distribution in the context ofMachine Learning.
In practice, traditional ML-scaling techniques will be applied after the DEA process, once we begin training our models.
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Table 4.1: Commonly Used RNA-seq NormalizationMethods

Sequencing
Depth

Read
Length

Within-Sample
Comparisons

Between-Sample
Comparisons Reference

Counts Per Million
(CPM) 3 7 3 7

Transcripts Per Million
(TPM) 3 3 3 7 [128]

Fragments Per Kilobase
Million (FPKM) 3 3 3 7 [129]

Trimmed Mean of
M-values (TMM) 3 7 7 3 [130]

Count Adjusted w/
TMM Factors (CTF) 7 7 7 3 [131]

Relative Log
Expression (RLE) 3 7 3 3 [132]

As depicted in Table 4.1, the RLEmethod is particularly useful for normalizing RNA-seq data as it cor-
rects for differences in sequencing depth, as well as ensures that gene expression levels are comparable
both within and between samples, making it ideal for our study of tamoxifen resistance in MCF7 cells.

3. Statistical Analysis: After normalization, the next step is to perform a statistical analysis to identify
those genes that are differentially expressed between tamoxifen-resistant and tamoxifen-sensitive MCF7
cells, as well as between tamoxifen-resistant and tamoxifen-sensitive breast cancer patients. At its core,
Differential Expression Analysis (DEA) is about quantifying the differences in gene expression levels
between two ormore conditions— such as treatment groups or disease states— thus providing valuable
insights into the underlying biological mechanisms governing cellular processes. In fact, it allows us to
(1) identify which genes exhibit statistically significant changes in their expression levels, (2) quantify the
magnitude of these changes; hopefully uncovering potential biomarkers implicated in some biological
processes.

Typically, we assume that the count-data obtained after the sequencing process follows a negative bino-
mial distribution as in Eq. (4.3).

𝐾𝑖𝑗 ∼ NB(𝜇𝑖,𝑗, 𝛼𝑖) (4.3)

where 𝜇𝑖,𝑗 is the mean expression level of gene 𝑖 in sample 𝑗, and 𝛼𝑖 is the gene-specific dispersion param-
eter for gene 𝑖. The negative binomial distribution is a common distribution for modeling count data as
it accounts for overdispersion, which is often observed in RNA-seq data due to biological variability and
technical noise [133]. Of course, in practice, these parameters 𝜇𝑖,𝑗 and 𝛼𝑖 are not known and need to be
estimated from the data. Likewise, a further statistical test needs to identify if the changes in expression
are statistically significant or not.
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First, the mean expression levels 𝜇𝑖,𝑗 are estimated using the sample-specific scaling factors 𝑠𝑗 obtained
during the normalization step in Eq. (4.2). That is, the expected value of the observed counts for gene 𝑖
in sample 𝑗 is given by Eq. (4.4) as in:

𝜇𝑖𝑗 = 𝑠𝑗𝑞𝑖𝑗 (4.4)

where 𝑞𝑖𝑗 is a quantity proportional to the concentration of RNA fragments from gene 𝑖 in sample 𝑗
[132]. For the dispersion parameter 𝛼𝑖, it is commonly estimated by using the maximum likelihood
estimation (MLE) method in Eq. (4.5).

𝛼𝑖 =
Var(𝐾𝑖𝑗) − 𝜇𝑖𝑗

𝜇2𝑖𝑗
(4.5)

To test for differential expression between conditions, a generalized linear model (GLM) is employed
with the link function in Eq. (4.6) below:

log2(𝑞𝑖𝑗) = ∑
𝑘
𝑥𝑗𝑘𝛽𝑖𝑘 (4.6)

where 𝑥𝑗𝑘 is the design matrix for the groups to compare. In the case of a two-group comparison, as in
our case, the design matrix elements indicate whether a sample 𝑗 belongs to the altered or control group.

The GLMmodel returns a set of estimated coefficients 𝛽𝑖𝑘 indicating the overall expression strength of
each gene 𝑖, from which we can derive the Fold-Changes (FCs) in gene expression levels between the
two groups. The FC is calculated as the ratio of the mean expression levels against the control group.
Subsequently, the obtained fold-changes need to be tested for statistical significance. This is typically
done using a Wald test [134] between the two groups. The Wald test statistic is calculated as in Eq.
(4.7).

𝑊𝑖,𝑔1−𝑔2 =
𝛽𝑔1 − 𝛽𝑔2

√Var(𝛽𝑔1 − 𝛽𝑔2)
(4.7)

Finally, the 𝑝-values from the Wald test are adjusted for multiple testing [135] to obtain the False Dis-
covery Rate (FDR) score for significance.

4. Significance Filtering: From the previous step, we have obtained the two reference metrics of DEA,
i.e., the fold-changes (usually expressed in its logarithmic form), and the false-discovery rate. To further
reduce the dimensionality of the problem, and to remove potentially non-significant genes, we apply
some filtering based on thesemetrics. In our case, wewill filter out geneswith an absolute log-fold change
under 0.5 (|log2 FC| < 0.5) and an FDR score smaller than 0.1 (FDR < 0.1). This is a commonpractice
in DEA to ensure that only the most significant genes are retained for further analysis. In practice, this
filtering step reduces the number of genes from tens of thousands to a few hundred, making the analysis
moremanageable and interpretable. To contextualize things once again, in the case of theTCGAdataset,
applying this filtering step reduces the number of genes from 24,344 to a mere 144.

As such, all the steps described above are applied to both the cell-line and patient RNA-seq data, sepa-
rately. As a result, we obtain a subset of genes that are differentially expressed between tamoxifen-resistant
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Figure 4.5: Volcano Plot of Statistically Significant Differentially Expressed Genes.
(Left: MCF7 Cell-Lines,Right: TCGA Patients)

and tamoxifen-sensitive MCF7 cells, as well as between tamoxifen-resistant and tamoxifen-sensitive breast can-
cer patients. Visually, these results are often represented using Volcano Plots, where the 𝑥-axis represents the
log-fold change in gene expression levels, and the y-axis represents the − log10 of the FDR score. The genes
that are significantly differentially expressed are highlighted in red, while the non-significant genes are shown
in gray. Figure 4.5 shows the results of the DEA analysis for both cell-line and patient data (note that the blue
points correspond to the top 10most differentially expressed genes in each dataset, but this is just for illustrative
purposes).

In any case, this process of applyingDEA to each dataset separately serves as a preliminary step for identifying
potential biomarkers for tamoxifen resistance inMCF7 cells and breast cancer patients. In the next section, we
will discuss how to combine the results of this separate analysis and accomplish the integration of cell-line and
patient RNA-seq data to hopefully uncover some potential genetic biomarkers responsible for this biological
phenomenon.

4.3 Integration of Cell-Line & Patient RNA-seq Data for Genetic
Biomarker Identification

Following the pipeline presented in the section above, we performed differential expression analysis on the cell
lines and patients RNA-seq data, separately. The results of the DEA analysis were used to identify potential
candidate genes related to resistance in each separate cohort of sequencing data. In order to combine both
sources of data, patients with a positive clinical response in the TCGA dataset were considered comparable to
control cells in theMCF7 cell-lines, whereas resistant patients in the TCGA group of patients were considered
comparable with TamR cells in the MCF7 cell-lines.

In practice, the integration process of ourmulti-source sequencing data is quite simple. First, for each two-
group comparison, genes with an expression level under the set threshold (i.e., 30 in our case) were removed,
and RLE normalization as in Eq. (4.2) was applied to the resulting gene count matrix (Step 1 in Figure 4.6).
Then, the results were filtered according to the selection criteria presented previously, i.e., (|log2 FC| > 0.5)
and (FDR < 0.1) (Step 2 in Figure 4.6). Finally, because of our assumption that patients with a positive clinical
response can be compared to control MCF7 cells, we select only those genes that are expressed in the same
direction in both cases: i.e., those that are either differentially over-expressed or under-expressed (Step 3 in Figure
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Figure 4.6: Distribution of Genes in the Joint Analysis of Cell-Line & Patient Data

4.6). As a final note, by applying this process, the number of relevant genes goes down to an astonishing 11, a
far more reasonable number of features to handle than the original 36,791.2

4.4 Python inHamiltonian for Computational Statistics

Introducing pyHaiCS, a Python library for Hamiltonian-basedMonte Carlo methods tailored towards practi-
cal applications in computational statistics. From sampling complex probability distributions, to approximating
complex integrals— such as in the context of Bayesian inference— pyHaiCS is designed to be fast, flexible, and
easy to use, with a focus on providing a user-friendly interface for researchers and practitioners while also offer-
ing users a variety of advanced features.

Although currently in development, our library implements a wide range of sampling algorithms— includ-
ing single-chain and multi-chain Hamiltoninan Monte Carlo (HMC) and Generalized HMC (GHMC); a va-
riety of numerical schemes for the integration of the simulatedHamiltonian dynamics (including a generalized
version of Multi-Stage Splitting integrators), or a novel adaptive algorithm—Adaptive Integration Approach
in Computational Statistics (s-AIA)— for the automatic tuning of the parameters of both the numerical inte-
grator and the sampler.

Likewise, several utilities for diagnosing the convergence and efficiency of the sampling process, as well as
multidisciplinary benchmarks — ranging from simple toy problems such as sampling from specific distribu-

2Regarding the motivation behind selecting only the top-10 most expressive genes (Step 4 in Figure 4.6), this is actually both biolog-
ically motivated— some members of the Cancer Heterogeneity Lab at bioGUNE raised their concerns about that particular gene
being included in our prognostic signature as itmay be actually involved in other biochemical processes— aswell as computationally
motivated by some further tasks we performed in our study of anti-cancer therapymodeling (this however, is well outside the scope
of this thesis).
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Figure 4.7: Logo of the pyHaiCS Library

tions, to more complex real-world applications in the fields of computational biology, Bayesian modeling, or
physics — are provided.

The main features of pyHaiCS3 —as summarized in Figure 4.8— include its:

• Efficient Implementation: pyHaiCS is built on top of the JAX library developed by Google [11, 12],
which provides automatic differentiation for computing gradients and Hessians, and Just-In-Time
(JIT) compilation for fast numerical computations. Additionally, the library is designed to take advantage
of multi-core CPUs, GPUs, or even TPUs for accelerated sampling, and to be highly parallelizable (e.g.,
by running each chain of multi-chain HMC in a separate CPU core/thread in the GPU).

• User-Friendly Interface: The library is designed to be easy to use, with a simple and intuitive API that
abstracts away the complexities of HamiltonianMonte Carlo (HMC) and related algorithms. Users can
define their own potential functions and priors, and run sampling algorithms with just a few lines of
code.

• Integration with Existing Tools: The library is designed to be easily integrated with other Python
libraries, such as NumPy [136], SciPy [137], and Scikit-Learn [138]. This allows users to capitalize on
existing tools and workflows, and build on top of the rich ecosystem of scientific computing in Python.
Hence, users can easily incorporate pyHaiCS into their existingMachine Learning workflows, and use it
for tasks such as inference, model selection, or parameter estimation in the context of Bayesianmodeling.

• Advanced Features: pyHaiCS supports a variety ofHamiltonian-inspired sampling algorithms, includ-
ing single-chain and multi-chain HMC (and GHMC), generalized 𝑘-th stage Multi-Stage Splitting inte-
grators, and adaptive integration schemes (such as s-AIA).

Additionally, at the time of this writing, and to the best of our knowledge, there are no available open-source
projects for bayesian programming in Python aside from PyMC: a library for bayesian statistical modeling
[139]. AlthoughPyMC seeks to address a much broader scope than pyHaiCS—such as including Variational
Inference models, tools for performing inference on ordinary differential equations (ODEs), or even Gaussian
Processes — its current implementation of Markov-Chain Monte Carlo methods (such as HMC) is tediously
slow, allows for very little tuning, lacksmany state-of-the-art advancements in the field (such as in terms ofmore
advanced samplers and integrators), and has an overwhelming API — mainly due to its symbolic approach to
priors and likelihoods—which makes it hard to integrate within existing ML pipelines.

3Library Available at https://github.com/miguelfrndz/pyHaiCS. Official Documentation Available at https://pyhaics.github.io/
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Figure 4.9: General Features of pyHaiCS

In order to provide a functional and easy-to-use library, and especially to ensure that our code can be easily
integrated into existing workflows, we have designed pyHaiCS with a simple rule in mind: Objects are specified
by interface, not by inheritance. That is, much alike Scikit-Learn, inheritance is not enforced; and instead,
code conventions provide a consistent interface for all samplers, integrators, and utilities. This allows for a
more flexible and modular design, and makes it easier for users to extend the library with their own custom
implementations. As Scikit’s design aroundmaking all estimators have a consistent fit and predict interface,
pyHaiCS follows a similar approach, but with a focus on Hamiltonian Monte Carlo methods and its related
algorithms. For instance, all integrators in pyHaiCS have a consistent integratemethod, which takes as input
the potential function, the initial state, and the parameters of the integrator, and returns the final state of the
system after the integration process. This consistent interfacemakes it easy for users to switch between different
integrators, or to implement their own custom ones, without having to worry about the underlying details
of the implementation. Moreover, pyHaiCS is designed to be highly modular, with each component of the
library being self-contained and independent of the others, as well as being easily extensible and customizable.
As a further point of strength, our library handles all auto-differentiation, such as potential gradients and
Hessians, through the JAX library, which provides a fast and efficient way to compute gradients as well as a
higher level of abstraction for the user to focus on the actual problem at hand. By only defining the potential
function of the Hamiltonian, the user can easily run the sampler and obtain the posterior distribution of the
parameters of interest. As an example of the ease-of-use ofpyHaiCS, Listing 1 shows a simple example of defining
a Bayesian Logistic Regression (BLR) model.

Regarding the actual features implemented in pyHaiCS, and the general organization of its API, Figure 4.9
provides a high-level overview of the main components of the library, while Figure 4.10 shows a tree visual-
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Listing 1 Example of How to Run a Bayesian Logistic RegressionModel in pyHaiCS
# Step 1 - Define the BLR model
@jax.jit
def model_fn(x, params):

return jax.nn.sigmoid(jnp.matmul(x, params))

# Step 2 - Define the log-prior and log-likelihood
@jax.jit
def log_prior_fn(params):

return jnp.sum(jax.scipy.stats.norm.logpdf(params))

@jax.jit
def log_likelihood_fn(x, y, params):

preds = model_fn(x, params)
return jnp.sum(y * jnp.log(preds) + (1 - y) * jnp.log(1 - preds))

# Step 3 - Define the log-posterior (remember, the oppositve of the potential)
@jax.jit
def log_posterior_fn(x, y, params):

return log_prior_fn(params) + log_likelihood_fn(x, y, params)

# Initialize the model parameters (including intercept term)
key = jax.random.PRNGKey(42)
mean_vector, cov_mat = jnp.zeros(X_train.shape[1]), jnp.eye(X_train.shape[1])
params = jax.random.multivariate_normal(key, mean_vector, cov_mat)

# HMC for posterior sampling
params_samples = haics.samplers.hamiltonian.HMC(params,

potential_args = (X_train, y_train),
n_samples = 1000, burn_in = 200,
step_size = 1e-3, n_steps = 100,
potential = neg_log_posterior_fn,
mass_matrix = jnp.eye(X_train.shape[1]),
integrator = haics.integrators.VerletIntegrator(),
RNG_key = key)

# Average across chains
params_samples = jnp.mean(params_samples, axis = 0)

# Make predictions using the samples
preds = jax.vmap(lambda params: model_fn(X_test, params))(params_samples)
mean_preds = jnp.mean(preds, axis = 0)

ization of the features implemented in pyHaiCS. As can be seen, the library is organized around four main
components: Hamiltonian Samplers,Numerical Integrators,Adaptive Tuning, and SamplingMetrics. Each of
these components is further divided into sub-components, such as the different samplers implemented in the
library (e.g., HMC, GHMC, and the yet to be implemented, MMHMC), the numerical integrators (such as
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Figure 4.10: Tree Visualization of Features in pyHaiCS (In Gray, Features Yet to be Implemented)

variants of Velocity-Verlet, and 2-Stage and 3-Stage MSSIs), or the s-AIA adaptive tuning scheme. The library
also includes a variety of samplingmetrics for diagnosing the convergence and efficiency of the sampling process,
as well as multidisciplinary benchmarks (and code examples) for testing the performance of the library. These
experimental models are presented in the subsection below.

ExperimentalModels Included in pyHaiCS

In this section, wepresent a classical set of benchmarking scenarios for comparing the performance andbehavior
of the different Hamiltonian-based estimators based on their following intrinsic properties (remember Table
3.2):

1. Correlation in the Samples.

2. Reversibility of the Chain.

3. Influence of the Importance SamplingRe-Weighting (e.g., for MMHMC).

These benchmarks, provided in the pyHaiCS repository, include:

• Banana-ShapedDistribution: Given data {𝑦𝑘}𝛫𝑘=1, we sample from thebanana-shaped posterior dis-
tribution [50, 140] of the parameter 𝜽 = (𝜃1, 𝜃2) for which the likelihood and prior distributions are
respectively given as:

𝑦𝑘|𝜽 ∼ 𝒩(𝜃1 + 𝜃22 , 𝜎2𝑦 ), 𝑘 = 1, 2, … ,𝐾 (4.8)

𝜃1, 𝜃2 ∼ 𝒩(0, 𝜎2𝜃 ) (4.9)
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Figure 4.11: Exploration of Space in Sampling from a Banana-Shaped Distribution

The sample data are generated with 𝜃1 + 𝜃22 = 1, 𝜎𝑦 = 2, 𝜎𝜃 = 1. Then, the potential function is given by:

𝑈(𝜽) = 1
2𝜎2𝑦

𝛫

∑
𝑘=1

(𝑦𝑘 − 𝜃1 − 𝜃22 )2 + log(𝜎2𝜃 𝜎100𝑦 ) + 1
2𝜎2𝜃

(𝜃21 + 𝜃22 ) (4.10)

The resulting samples in Figure 4.11 were produced for 10 independent chains, each with 5000 burn-in
iterations, 5000 samples, 𝐿 = 14 integration steps, a step-size of 𝜀 = 1/9, and a momentum noise of
𝜙 = 0.5.

• Multivariate Gaussian Distribution: Let’s take a step up and look at amore serious example; sampling
from a𝐷-dimensionalMultivariate Gaussian Distribution𝒩(𝟎, Σ) [50, 72], where the precisionma-
trix Σ−1 is generated from aWishart distribution [141].

In this case, we will take 𝐷 = 1000 dimensions and, for strictly computational reasons, we take the
covariance matrix to be diagonal with

Σ𝑖𝑖 = 𝜎2𝑖 (4.11)

where 𝜎2𝑖 is the 𝑖-th smallest eigenvalue of the original covariance matrix. Thus, the potential function in
this case is defined as:

𝑈(𝜽) = 1
2𝜽

𝛵Σ−1𝜽 (4.12)

• BayesianLogisticRegression (BLR):As introduced inSection3.2, BayesianLogisticRegression (BLR)
is the probabilistic extension of the traditional point-estimate logistic regressionmodel by incorporating a
prior distribution over the parameters of themodel. In the BLRmodel, given𝐾 data instances {𝐱𝑘, 𝑦𝑘}𝛫𝑘=1
where 𝐱𝑘 = (1, 𝑥1, … , 𝑥𝐷) are vectors of𝐷 covariates and 𝑦𝑘 ∈ {0, 1} are the binary responses. The prob-
ability of a particular outcome is linked to the linear predictor function through the logit function as
in:

𝑝(𝑦𝑘|𝐱𝑘, 𝜽) = 𝜎(𝜽𝛵𝐱𝑘) =
1

1 + exp(−𝜽𝛵𝐱𝑘)
(4.13)

𝜽𝛵𝐱𝑘 ≡ logit(𝑝𝑘) = log(
𝑝𝑘

1 − 𝑝𝑘
) = 𝜃0 + 𝜃1𝑥1,𝑘 + … 𝜃𝐷𝑥𝐷,𝑘 (4.14)
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Table 4.2: Datasets Used for Benchmarking the BLRModel

Dataset 𝐷 𝐾 Reference

German 25 1000 German Credit Dataset

Sonar 61 208 Sonar Dataset

Musk 167 476 Musk Dataset (Version 1)

Secom 444 1567 SECOMDataset

where 𝜽 = (𝜃0, 𝜃1, … , 𝜃𝐷)𝛵 are the parameters of the model, with the term 𝜃0 usually denoted as the in-
tercept. The prior distribution over the parameters 𝜽 is usually chosen to be a Multivariate Gaussian
distribution as:

𝜽 ∼ 𝒩(𝝁, 𝚺), Usually 𝜽 ∼ 𝒩(𝟎, 𝐈𝐷+1) (4.15)

where 𝝁 ∈ ℝ𝐷+1 is themean vector, 𝚺 ∈ ℝ𝐷+1 is the covariance matrix, 𝟎 is the zero vector and 𝐈𝐷+1 is
the identity matrix of order𝐷 + 1.

In order to simplify the notation, let us define the vectorized response variable 𝐲 = (𝑦1, … , 𝑦𝛫), and the
designmatrix𝑋 ∈ ℝ𝛫,𝐷 as the input to the model:

𝑋 = (

1 𝑥1,1 … 𝑥1,𝐷
1 𝑥2,1 … 𝑥2,𝐷
⋮ ⋮ ⋱ ⋮
1 𝑥𝛫,1 … 𝑥𝛫,𝐷

) (4.16)

The likelihood of the data is given by the product of the Bernoulli distributions as:

ℒ(𝐲|𝑋, 𝜽) ≡ 𝑝(𝐲|𝑋, 𝜽) =
𝛫

∏
𝑘=1

𝑝(𝑦𝑘|𝑋𝑘, 𝜽) =
𝛫

∏
𝑘=1

(
exp(𝑋𝑘𝜽)

1 + exp(𝑋𝑘𝜽)
)
𝑦𝑘
( 1
1 + exp(𝑋𝑘𝜽)

)
1−𝑦𝑘

(4.17)

where𝑋𝑘 = (1, 𝑥𝑘,1, … , 𝑥𝑘,𝐷) is the 𝑘-th entry row vector of the design matrix𝑋.

Then, the potential function can be expressed as:

𝑈(𝜽) = −
𝛫

∑
𝑘=1

[𝑦𝑘 ⋅ 𝑋𝑘𝜽 − log(1 + exp(𝑋𝑘𝜽))] +
1
2𝛼

𝐷

∑
𝑖=1

𝜃2𝑖 (4.18)

For consistency with the benchmarks provided in [50], the pyHaiCS project includes the datasets in
Table 4.2. All of them are publicly available online and their reference is also provided in the table.

• DynamicCOVID-19EpidemiologicalModels: Another interesting applicationofHamiltonian-based
Monte Carlo is proposed in [142]. In their work, a SEIR (Susceptible-Exposed-Infectious-Remove) dy-
namic compartmental (i.e., by splitting the population into disjoint compartments and defining a tran-
sition flow between compartments)mechanistic (i.e., where the disease dynamics are purely governed by
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Figure 4.12: Flow Diagram for the SEMIKRCompartmental Model w/ Transmission Rate 𝛽(𝑡)

differential equations) epidemiological model — with a time-dependent transmission rate parametrized
using Bayesian P-splines— is applied tomodeling the COVID-19 incidence data in the Basque Country
(Spain).

More specifically, a SEMIKR model is defined with a time-depdendent transmission rate 𝛽(𝑡) (i.e., the
average number of contacts per person, per time unit, multiplied by the probability of infection in a
contact) parametrized by Bayesian P-Splines.

The SEMIKRmodel consists of the following compartments:

– 𝑆 corresponds to the number of individuals that are susceptible to be infected.

– 𝐸1, … , 𝐸𝛭 reflect the number of individuals at different stages of exposure (i.e., infected but not

yet infectious). The average time spent by an individual being exposed is 1𝛼 .

– 𝐼1, … , 𝐼𝛫 reflect the number of infectious individuals. The average time spent by an individual

being infectious is 1𝛾 .

– 𝑅 represents the number of individuals removed from the pool of susceptible individuals (either
by death or by recovery).

– 𝐶𝛪 is a counter of the total number of individuals that have been infected.

– 𝛽(𝑡) is the time-dependent transmission rate.

To model the transmission rate 𝛽(𝑡) a set of B-splines is used such that:

log 𝛽(𝑡) =
𝑚

∑
𝑖=1

𝛽𝑖𝐵𝑖(𝑡) (4.19)

where {𝐵𝑖(𝑡)}𝑚𝑖=1 form aB-spline basis over the time interval [𝑡0, 𝑡1], with𝑚 = 𝑞+𝑑−1 (𝑞 is the number of
knots, 𝑑 is the degree of the polynomials of the B-splines); and 𝜷 = (𝛽1, … , 𝛽𝑚) is a vector of coefficients.
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Likewise, the SEMIKRmodel is governed by the following system of ODEs:

𝑆̇(𝑡) = −𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)𝑁 , (4.20)

𝐸̇1(𝑡) = exp(
𝑚

∑
𝑖=1

𝛽𝑖𝐵𝑖(𝑡))𝑆(𝑡)
𝐼(𝑡)
𝑁 −𝑀𝛼𝐸1(𝑡), 𝐸̇𝛭(𝑡) = 𝑀𝛼𝐸𝛭−1(𝑡) −𝑀𝛼𝐸𝛭(𝑡), (4.21)

𝐼̇1(𝑡) = 𝑀𝛼𝐸𝛭(𝑡) − 𝐾𝛾𝐼1(𝑡), 𝐼̇𝛫(𝑡) = 𝐾𝛾𝐼𝛫−1(𝑡) − 𝐾𝛾𝐼𝛫(𝑡), (4.22)

𝑅̇(𝑡) = 𝐾𝛾𝐼𝛫(𝑡), (4.23)

𝐶̇𝛪(𝑡) = exp(
𝑚

∑
𝑖=1

𝛽𝑖𝐵𝑖(𝑡))𝑆(𝑡)
𝐼(𝑡)
𝑁 (4.24)

with the following constraints:

⎧{{

⎨{{
⎩

𝑆(𝑡0) = 𝑁 − 𝐸0, 𝐸1(𝑡0) = 𝐶𝛪(𝑡0) = 𝐸0
𝐸2(𝑡0) = ⋯ = 𝐸𝛭(𝑡0) = 𝐼1(𝑡0) = ⋯ = 𝐼𝛫(𝑡0) = 𝑅(𝑡0) = 0

𝐸(𝑡) = ∑𝛭
𝑖=1 𝐸𝑖(𝑡)

𝐼(𝑡) = ∑𝛫
𝑗=1 𝐼𝑗(𝑡)

𝑁 = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)

(4.25)

Note that the number of newly infected individuals at time 𝑡 is given by 𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)/𝑁.

Additionally, the total number of new individuals infected at day 𝑡 is given by:

𝐶(𝑡) = 𝐶𝛪(𝑡) − 𝐶𝛪(𝑡 − 1) (4.26)

Where our predicted (corrected) daily incidence as in Figure 4.13, is sampled from the following distri-
bution:

𝐶̃(𝑡)
𝜂(𝑡) ∼ Neg.Binom.(𝐶(𝑡), 𝜙) (4.27)

To simplify the notation, we will use the following notations to represent the state 𝐲(𝑡) and parameters
𝐩 of our model respectively:

𝐲(𝑡) = [𝑆(𝑡), 𝐸1(𝑡), … , 𝐸𝛭(𝑡), 𝐼1, … , 𝐼𝛫(𝑡), 𝑅(𝑡), 𝐶𝛪(𝑡)]
𝛵 (4.28)

𝐩 = [𝛼, 𝛾, 𝐸0, 𝜙−1, 𝜏, 𝜷]
𝛵 (4.29)

• Talbot Physical Effect: Lastly, in collaboration with the Linear and Non-Linear Waves group4 at
BCAM, we have included a final benchmark related to the analysis of Partial Differential Equations
(PDEs) in the context of the phenomenon occurring when a plane light wave is diffracted by an infi-

4Thank you to Gabriel Ybarra (BCAM) and Luis Vega (BCAM, University of the Basque Country). The results of this work are
currently under submission but have not been officially published yet. A preprint is available in [143]
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Figure 4.13: Daily COVID-19 Incidence in the Basque Country (Before/After Correction)

nite set of equally spaced slits (the grating, with distance 𝑑 between the slits). That is, we wish to find
solutions to the following differential equation:

𝜕2𝑢
𝜕𝑡2 = 𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢
𝜕𝑦2 +

𝜕2𝑢
𝜕𝑧2 (4.30)

in the domain 0 ≤ 𝑥 ≤ 𝑑

2
, 𝑧 ≥ 0, 𝑡 ≥ 0 under the border conditions in 𝑥:

𝜕𝑢
𝜕𝑥∣𝑥=0

= 𝜕𝑢
𝜕𝑥∣𝑥=𝑑/2

= 0 (4.31)

the boundary conditions in 𝑧:

𝑢(𝑡, 𝑥, 𝑧 = 0) = 𝑓(𝑡, 𝑥) = sin(𝜔𝑡)𝜃(𝑡) 𝜒( 𝑥𝑤) (4.32)

and the initial conditions:

𝑢(𝑡 = 0, 𝑥, 𝑧) = 0, 𝜕𝑢
𝜕𝑡 ∣𝑡=0

= 0 (4.33)

Without getting into details of the (long) derivation process, the solution can be expressed in closed-form
as in Eq. (4.34) below:

𝑢(𝑡, 𝑥, 𝑧) = ∑
𝑛
𝑔𝑛(sin𝜔(𝑡 − 𝑧) − 𝑘𝑛𝑧∫

𝑡

𝑧

𝐽1(𝑘𝑛√𝜏2 − 𝑧2)
√𝜏2 − 𝑧2

sin𝜔(𝑡 − 𝜏) 𝑑𝜏)𝜃(𝑡 − 𝑧) cos 𝑘𝑛𝑥 (4.34)

As can be seen, solving the problem entails numerically approximating the complex integral in magenta,
which involves (1) a Bessel function of the first kind, (2) an avoidable singularity as 𝜏 → 𝑧, (3) a com-
position of two highly oscillatory functions. In order to circumvent the limitations of traditional solvers,
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Figure 4.14: Optical Talbot Effect of a Wave (Field Intensity Approximated w/Monte Carlo)

pyHaiCS was employed to numerically approximate the integral. An example of the resulting fields is
provided in Figure 4.14.

4.5 Bayesian Logistic Regression &Other ResistanceModels

Oncewehave obtained the refined list of potential biomarkers from the jointDEA-based analysis of patients and
cell lines in Section 4.3, we can proceed to the next step: the development of our tamoxifen resistance models.
More specifically, our goal is to train a model that can predict the resistance of a patient to tamoxifen treatment
based on the expression levels of the selected genes. More generally, given the expression levels of the selected
genes 𝐱 = (𝑥1, … , 𝑥𝐷), we want to predict the probability of resistance to tamoxifen treatment 𝑝(𝑦 = 1|𝐱). This
can be achieved by training a binary classifier on the data, but first, we need to normalize the expression levels
of the genes to ensure that they are on the same scale. This is done by applying the 𝑧-score transformation to
the expression levels of the genes, which ensures that the expression levels are centered around zero and have a
standard deviation of one. The 𝑧-score transformation is given by:

𝑧𝑖 =
𝑥𝑖 − 𝜇𝑖
𝜎𝑖

(4.35)

where 𝑥𝑖 is the expression level of gene 𝑖, 𝜇𝑖 is themean expression level of gene 𝑖, and 𝜎𝑖 is the standard deviation
of the expression level of gene 𝑖. Once the expression levels of the genes have been normalized, we can proceed
to train the binary classifier on the data.

In the following subsections, we will present the different resistance models that we have developed, starting
with the Bayesian Logistic Regression (BLR) model, and then moving on to other approaches such as shal-
low classifiers, ensemble methods, and deep learning architectures. Finally, we will provide a brief overview of
our weight-perturbatory approach for training a Bayesian Neural Network (BNN) to predict the resistance of
patients to tamoxifen treatment.
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4.5.1 Bayesian Logistic Regression

Ourmain resistance model in this work is the Bayesian Logistic Regression (BLR), more specifically, combined
with Monte Carlo sampling methods based on Hamiltonian dynamics. Despite Sections 3.2 & 4.4 having al-
ready covered the theoretical aspects of theBLRmodel and its implementation in thepyHaiCS library—mainly
the definition of the associatedHamiltonian potential—, and Listing 1 having shown how to run a BLRmodel
in pyHaiCS, we will now delve into the details of the particular BLR implementation for predicting tamoxifen
resistance in breast cancer patients.

By considering a Bayesian framework, we can incorporate prior information about the parameters of the
model extracted from the lab-grownMCF7 cell-lines. From the results of the DEA analysis in Section 4.2, we
set a normal prior for each gene 𝑖 centered in the mean 𝜇𝑖 = log2 FC𝑖 value of each gene as in Eq. (4.36).

𝜃𝑖 ∼ 𝒩(log2 FC𝑖, 2.5
2), 𝑖 = 1, … ,𝐷 (4.36)

where the standard deviationwas chosen following the recommendations in [144].

4.5.2 Traditional ShallowModels

In addition to the BLR model above, we also trained a variety of traditional shallow classifiers on the data as
a baseline for comparison. These models were trained using the Scikit-Learn library in Python, and the hy-
perparameters of the models were tuned using a grid-search and stratified cross-validation. Of course, these
point-estimatemodels do not include any expert prior information on the parameters of themodel, nor do they
provide any measure of uncertainty in the predictions. However, they can still provide valuable insights into
the data and serve as a benchmark for the performance of the BLRmodel. Among these models we find:

• (Point-Estimate) Logistic Regression: A traditional vanilla logistic regression model trained using
themaximum likelihoodmethod, such as with the L-BFGS second-order optimizer [145].

𝑝(𝑦 = 1|𝐱) = 1
1 + exp(−𝜽𝛵𝐱) (4.37)

• Support-Vector Classifier (SVC): A support-vector classifier trained using both a linear and a radial
basis function (RBF) kernel. The linear SVC model is trained by maximizing the margin between the
two classes using a hyperplane defined by:

𝐰𝛵𝐱 + 𝑏 = 0 (4.38)

which minimizes 1
2
‖𝐰‖2 subject to 𝑦𝑖(𝐰𝛵𝐱𝑖 + 𝑏) ≥ 1, ∀𝑖. A model prediction is given by:

𝑦 = sign(𝐰𝛵𝐱 + 𝑏) (4.39)

TheRBF kernel [146] however, is used to handle non-linear data by mapping it to a higher-dimensional
space using the following kernel:

𝐾(𝐱𝑖, 𝐱𝑗) = exp(−𝛾‖𝐱𝑖 − 𝐱𝑗‖2), 𝛾 > 0 (4.40)
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Table 4.3: Popular Kernels for Support-Vector Machines

Kernel Expression

Linear 𝐾(𝐱𝑖, 𝐱𝑗) = 𝐱𝛵𝑖 𝐱𝑗

Polynomial 𝐾(𝐱𝑖, 𝐱𝑗) = (𝐱𝛵𝑖 𝐱𝑗 + 𝑐)𝑑

RBF 𝐾(𝐱𝑖, 𝐱𝑗) = exp(−𝛾‖𝐱𝑖 − 𝐱𝑗‖2)

Sigmoid 𝐾(𝐱𝑖, 𝐱𝑗) = tanh(𝜅𝐱𝛵𝑖 𝐱𝑗 + 𝑐)

where the output prediction of the model is now given by:

𝑦 = sign(
𝛮

∑
𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝐱𝑖, 𝐱) + 𝑏) (4.41)

where 𝛼𝑖 are the Lagrange multipliers (obtained by solving the dual optimization problem), 𝑦𝑖 are the
labels, and 𝑏 is the bias term. Of course, many other kernels𝐾(𝐱𝑖, 𝐱𝑗) exist in the literature for different
non-linear mappings. Some of the most popular ones have been summarized in Table 4.3.

• Naive Bayes: A simple probabilistic classifier based on the Bayes theorem with strong (naive) indepen-
dence assumptions between the features [147]. The model is trained by estimating the likelihood of the
features given the class and the prior probability of the class. The prediction is then made by selecting
the class with the highest posterior probability. That is:

𝑦 = argmax
𝑦

𝑝(𝑦)
𝐷

∏
𝑖=1

𝑝(𝑥𝑖|𝑦) (4.42)

In our case, we considered a Gaussian Naive Bayes model, i.e., the likelihood is assumed to be Gaussian:

𝑝(𝑥𝑖|𝑦) =
1

√2𝜋𝜎2𝑦
exp(−

(𝑥𝑖 − 𝜇𝑦,𝑖)2

2𝜎2𝑦
) (4.43)

where 𝜇𝑦,𝑖 and 𝜎2𝑦 are the mean and variance of the feature 𝑥𝑖 in class 𝑦 respectively. These parameters are
estimated from the training data using the maximum likelihood method.

4.5.3 EnsembleMethods

In addition to the traditional shallow models above, we also trained a variety of ensemble methods on the
data. Ensemble methods combine multiple models to improve the predictive performance of the model. The
idea behind ensemble methods is that, by combining multiple models, each with different strengths and weak-
nesses, we can create a more robust and accurate estimator. There are many different ensemble methods in the
literature, but they can be broadly classified into three categories (or paradigms) as summarized in Figure 4.15:

1. Bagging: Bagging (bootstrap aggregation) is an ensemblemethod that works by trainingmultiple mod-
els on different subsets of the data (with replacement) and then combining the predictions of themodels.
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Figure 4.15: Comparison Between the Three Main Paradigms of Ensembling (Source)

The ideabehindbagging is that by trainingmultiplemodels ondifferent subsets of thedata, we can reduce
the variance of the model and improve its predictive performance. The most popular bagging algorithm
is the Random Forest algorithm in Figure 4.16.

2. Boosting: Boosting is an ensemble method that works by training multiple models sequentially, with
eachmodel learning from the mistakes of the previous model. The idea behind boosting is that by train-
ing multiple models sequentially, we can reduce the bias of the model and improve its predictive perfor-
mance. Themost popular boosting algorithm is the Gradient Boosting algorithm, which trains multiple
weak learners (e.g., decision trees) sequentially, with each learner learning from the mislabeled instances
of the previous learner.

3. Stacking: Lastly, and for the sake of completeness, stacking is an ensemble method that works by train-
ing multiple models and then combining the predictions of the models using another model (themeta-
learner). For instance, training a set of estimators (not necessarily of the same type) and then combining
the predictions of the models using a linear regression meta-learner.

In our case, we compared the performance of the following ensemble methods:

• RandomForest: Apopular ensemblemethod thatworks by trainingmultiple decision trees ondifferent
subsets of the data (with replacement) and then combining the predictions of the trees to make the final
prediction (see Figure 4.16).

• AdaBoost: A boosting algorithm that works by training multiple weak learners sequentially, with each
learner learning from the mistakes of the previous learner [148]. AdaBoost works by assigning a weight
to each training example, with the weight ofmisclassified examples being increased in each iteration. The
final prediction is then made by combining the predictions of the weak learners, with the weight of each
learner being determined by its accuracy.

• XGBoost: A popular implementation of the Gradient Boosting algorithm that is optimized for speed
and performance. Again, as the other gradient boosting methods, XGBoost [149] works by training
multiple weak learners (e.g., decision trees) sequentially, with each learner learning from the mistakes of
theprevious learner. However,XGBoost iswell-known for its speed andperformance—even supporting
fully distributed GPU training— and is widely used in practice for a variety of machine learning tasks.
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Figure 4.16: Visualization of the Random Forest Ensemble Method (TikZ Code Source)

• Hist-Gradient Boosting: Inspired byLightGBM [150], theHist-Gradient Boosting algorithm is a vari-
ant of theGradient Boosting algorithm that is implemented in Scikit-Learn and is optimized for dealing
with large datasets (𝑁 ≥ 10, 000). In practice, this drastic speedup in performance is due to the estimator
binning the input samples into integer-valued bins, thus greatly reducing the number of splitting points
to be considered.

4.5.4 Neural Network Architectures

Next, we trained a variety of deep learning architectures on the data. Deep learning is a subfield of machine
learning that focuses on training neural networks with multiple layers (i.e., deep neural networks) to learn com-
plex patterns in the data. Deep learning has been shown to be highly effective for a wide range of machine
learning tasks, including image recognition, speech recognition, and natural language processing. Although we
do not wish to unnecessarily extend the length of this document with a detailed explanation of neural networks
and their training algorithms (especially because it is not the focus of this work but rather a baseline for com-
paring our Bayesian models), we will provide a brief overview of the deep learning architectures that we trained
on the data:

• Multi-Layer Perceptron (MLP):A traditional feedforward neural networkwithmultiple layers of neu-
rons. The MLP model is trained using the backpropagation algorithm, which works by iteratively up-
dating the weights of the network 𝜽 by gradient descent to minimize the loss functionℒ:

𝜽∗ = argmin
𝜽

ℒ(𝜽) (4.44)
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Figure 4.17: Multi-Layer Perceptron (MLP) Architecture (TikZ Source Code)

At its core, traditional gradient descent updates the model parameters at each step 𝑡, based on a loss func-
tionℒ, according to the rule in (4.45):

𝜽𝑡 ← 𝜽𝑡−1 − 𝛼∇⃗𝜽ℒ(𝜽𝑡−1) (4.45)

where the scalar 𝛼 (which can be either fixed or change during training with a scheduler) is commonly
referred to as the learning-rate.

The MLP architecture, as summarized in Figure 4.17, consists of an input layer, one or more hidden
layers, and an output layer. The hidden layers are typically fully connected, meaning that each neuron
in a layer is connected to every neuron in the previous layer. The output layer is usually a softmax layer
for classification tasks, which outputs a probability distribution over the classes. Additionally, in order
to improve the generalization of themodel, we also included 1) dropout in the network, which randomly
drop out a fraction of the neurons during training to prevent overfitting; and 2) early-stopping, which
stops the training process when the validation loss stops decreasing.

66

https://tikz.net/neural_networks/


BayesianModeling of Tamoxifen Resistance in Breast Cancer Cells
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Figure 4.18: Autoencoder (w/ Classifier Module) Architecture

• Autoencoder: An autoencoder is a type of neural network that is trained to learn a compressed rep-
resentation of the input data. The autoencoder, as in Figure 4.18, consists of an encoder network that
maps the input data to a lower-dimensional representation (the latent space), and a decoder network that
maps the lower-dimensional representation back to the original input data. The autoencoder is trained
by minimizing the reconstruction error between the input data and the output data (such as the mean
squared error). Once the autoencoder has been trained, the encoder network can be used to extract the
compressed representation of the input data, which can then be used as input to another model (e.g.,
a classifier). In our case, we trained an autoencoder on the gene expression data to learn a compressed
representation of the data that could be used as input to the classification module. The loss function of
the autoencoder is given by:

ℒ = ℒMSE + ℒBCE =
1
𝑁

𝛮

∑
𝑖=1

‖𝐱𝑖 − 𝐱̂𝑖‖2−
1
𝑁

𝛮

∑
𝑖=1

[𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)] (4.46)

where 𝐱𝑖 is the input genetic data, 𝐱̂𝑖 is the output reconstructed data, 𝑦𝑖 is the ground-truth patient out-
come, and 𝑦𝑖 is the predicted label.

• Variational Autoencoder (VAE): Lastly, we also employed a variational autoencoder (VAE) [151] to
learn a probabilistic representation of the input data. The VAE, as in Figure 4.19, consists of an encoder
network thatmaps the input data to a distribution over the latent space, and a decoder network thatmaps
the latent space back to the input data. The VAE uses what is commonly known as the reparameteriza-
tion trick (𝑧 = 𝜇 + 𝜎 ⊙ 𝜀) to sample from the latent space, which allows the model to be trained using
backpropagation and traditional gradient descent (𝜇 and 𝜎 are learned as regularmodel parameters). The
VAE is trained bymaximizing a composite loss function that consists of two terms: the reconstruction loss
and theKL divergence loss. The reconstruction loss measures the difference between the input data and
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Figure 4.19: Variational Autoencoder (VAE w/ Classifier Module) Architecture

the output data (in our caseℒMSE), while the KL divergence loss measures the difference between the
learned distribution over the latent space and a prior distribution (e.g., a standard normal distribution).
Additionally, due to the classificationmodule in the architecture, we also included a binary cross-entropy
loss termℒBCE in the loss function. Thus, the loss function of our VAE is given by:

ℒ = ℒMSE + ℒKL + ℒBCE

= 1
𝑁

𝛮

∑
𝑖=1

‖𝐱𝑖 − 𝐱̂𝑖‖2 +
1
𝑁

𝛮

∑
𝑖=1

KL(𝑞(𝐳𝑖|𝐱𝑖)‖𝑝(𝐳))

− 1
𝑁

𝛮

∑
𝑖=1

[𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)]

(4.47)

where 𝐳𝑖 is the latent representation of the input data, 𝑞(𝐳𝑖|𝐱𝑖) is the learned distribution over the latent
space, and 𝑝(𝐳) is the prior distribution over the latent space.

4.5.5 Bayesian Neural Networks

Finally, followinguponour general interest inBayesianmodels, we introduceBayesianNeuralNetworks (BNNs)
[152–154] as yet another example of stochastic statistical model. Without getting into too much detail, in a
BNN, the weights of the neural network are treated as random variables of a probability distribution, rather
than as fixed scalar parameters5 as depicted in Figure 4.20. Despite the inherent advantages of BNNs against
traditional point-estimate neural networks— such as their uncertainty quantification, robustness to overfitting,
or the ability to introduce prior knowledge on theweight distributions— they pose a significant computational
bottleneck both at training time and during inference. In fact, as you may remember from Section 3.2, dealing

5There are also some instances in which the probability distributions are defined for the activations instead, but let us only focus in
the more traditional case.
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Figure 4.20: Bayesian Neural Network (BNN) Architecture (TikZ Source Code)
(Left: A point-estimate traditional network,Right: A BNNw/ probabilistic weights)

with Bayesianmodels entails the computation of intractable integrals and thus whywe resort to using sampling
methods.

Although we will not get here into the specific technical details of BNNs6 —mainly because they are quite
easily understood by extrapolating the concepts applied here to BLR to neural network weights—we will take
the liberty of touching on twovery interesting concepts onwhichwe stumbledupon thiswork. First, the extrap-
olation toBNNs of a sensible early-stopping criterion. Indeed, throughwhatwe have decided to name asMonte
Carlo early-stopping, BNNs offer the possibility of independently— i.e., not in terms of the loss being used
for learning, or based on the evaluation metrics of the problem — quantifying the generalization capabilities
of the model by sampling from the posterior distribution of the weights and evaluating the model against the
actual ground-truths through some sort of similarity measures (e.g., cosine similarity, euclidean similarity, etc.).
Second, the inherent problem of training and inferencing BNNs can be conceived from several perspectives.
Although we will not make an exhaustive list of the methods available in the literature, we believe it is quite
interesting to explain the general ideas behind these approaches. In general terms, we can divide the methods
into the four categories below, all of which are summarized in Figure 4.21.

• (Properly) Bayesian Methods: First, we find those methods that are purely Bayesian in the sense that
they learn a posterior distributionby adhering strictly toBayesianprinciples: they treat parameters as ran-
dom variables, update beliefs based on Bayes’ theorem, and aim to approximate, or explore, the full pos-
terior distribution rather than defaulting to point estimates. Broadly, this category comprises Markov-
ChainMonteCarlo (MCMC)methods—which rely on sampling-based approximatemethods to gener-
ate samples directly from the posterior distribution—andVariational Inference (VI)—an optimization-
based approximatemethod seeking a simpler parametric distribution 𝑞𝜙(𝜽) that is closest (by a divergence
measure such as the KL-divergence) to the true posterior 𝑝(𝜽|𝒟).

• Quasi-Bayesian Methods: The main problem with the approaches above is that the inherent stochas-
ticity in theweights of the network impedes backpropagation as a learningmethod. To counter this, and
exploit the training benefits of traditional gradient descent (GD), several approaches have been proposed
in the literature to combine purely bayesian updates and GD. Among these, we find Bayesian Stochastic

6For the interested reader, [152] is a wonderful survey on the topic.
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Figure 4.21: Summary of the Different Approaches to Training BayesianModels

Gradient Descent (BSGD, also know as probabilistic backpropagation, or Bayes-by-backprop) [152, 155]
which applies gradient descent over the log-prior and log-likelihood as in Eq. 4.48.

𝜽𝑡+1 ← 𝜽𝑡 − 𝛼𝑡(𝜆1∇⃗𝜽𝑝(𝜽𝑡) + 𝜆2
𝑁
𝑛

𝛮

∑
𝑖=1

∇⃗𝜽𝑝(𝑥𝑖|𝜽𝑡)) , 𝜆1 + 𝜆2 = 1 (4.48)

where 𝜆1 and 𝜆2 are the weights assigned to the gradients on the prior and likelihood, respectively. Like-
wise, from the same family of methods, Stochastic Gradient Langevin Dynamics (SGLD) [155] in Eq.
(4.49) follows a similar approach with a slightly modified update rule.

𝜽𝑡+1 ← 𝜽𝑡 − 𝛼𝑡(𝜆1∇⃗𝜽𝑝(𝜽𝑡) + 𝜆2
𝑁
𝑛

𝛮

∑
𝑖=1

∇⃗𝜽𝑝(𝑥𝑖|𝜽𝑡)) + 𝜂𝑡 , 𝜂𝑡 ∼ 𝒩(0, 𝛼𝑡) (4.49)

However, in practice, it has been shown that although this method converges to a Markov-Chain that
samples the true posterior as 𝛼𝑡 → 0, 𝑡 → ∞, the samples become increasingly autocorrelated [155, 156].

• Parametrical (aka Weight Perturbation) Methods: Following upon the previous approaches, the
next logical step is tomove forward towards purely parametricalmethods. Similarly to the reparametriza-
tion trick in Variational Autoencoders, here the probabilistic weights in the network are represented in
terms of a set of deterministic parameters that define the underlying distribution (as was the case with 𝜇
and 𝜎 for the Gaussian VAE in Figure 4.19), and are learned through traditional gradient descent opti-
mization. Likewise, as was the case in the VAEs, stochasticity is introduced through the random pertur-
bation of the weights (or the activations) of the model.
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Within these types of methods we find the Local Reparametrization Trick (LRT) [157] which im-
plements exactly the same approach used in VAEs. For instance, if we set a gaussian distribution for
the weights, i.e., 𝑞𝜙(𝐰) = 𝒩(𝝁, 𝝈2), 𝐰 ∈ 𝐖, then the weights can be locally reparametrized as 𝐰 =
𝝁 + 𝝈 ⊙ 𝜺, 𝜺 ∼ 𝒩(𝟎, I). In fact, [157] shows that the stochasticity in the weights (i.e., actually in 𝜺)
only influences the expected log-likelihood through the activations of the neurons. As these have amuch
lower dimension, it is generally preferable to directly sample the activations instead. Moreover, the au-
thors also introduce variational dropout, an extension of the traditional dropout generalization method
for neural networks to the context of Bayesian models.

Another very famous approach to these weight perturbatory models, is the Flipout Estimator [158].
Similar to LRT, Flipout introduces stochasticity in the weights of the network by sampling from a distri-
bution of perturbations. However, in this case, the sampling is much more computationally efficient as
it uses a common perturbation Δ̂𝐖 shared by all examples in the mini-batch. In fact, this method effi-
ciently decorrelates the weight gradients between different samples in a mini-batch, and also reduces the
variance compared to the shared perturbations in LRT. For the interested, both LRT and Flipout Esti-
mation are the implement approaches in thewonderful BayesianTorch [159] library by Intel: aPyTorch
wrapper for Bayesian Neural Networks.

• Physics-Informed Methods: Finally, we find a very interesting approach to the problem of training
BNNs by approximating the solving of the intractable integrals in the posterior distribution of the prop-
erly Bayesian methods above by employing Physics-Informed Neural Networks (PINNs). Although
much work has been done in this particular field, we will limit ourselves here to three simple examples
that are related to approximating HamiltonianMonte Carlo (HMC).

For instance, Latent Hamiltonian Neural Networks (LHNNs) [160], solve the computationally ex-
pensive limitations of HMC when dealing with large datasets by approximating the true Hamiltonian
𝐻(𝜽, 𝐩)with a neural network parametrization𝐻𝐖(𝜽, 𝐩) trained tominimize the loss in terms of the gra-
dients with respect to 𝜽 and 𝐩. Although at the time of its publication this method was praised due to its
time-reversibility and conservation of the parametrized Hamiltonian, training the network still required
computing analytical solutions to the gradients.

On the other hand, Symplectic Networks such as SympNets [161] and its NeuralODE approxima-
tion using the Taylor expansion of the gradients [162] have proven to be a significant step up. In fact,
symplectic networks directly estimate the whole process of integrating Hamiltonian dynamics. That is,
given a pair of initial state (𝜽0, 𝐩0), the model estimates the final state (𝜽𝐿, 𝐩𝐿) after 𝐿 supposed integra-
tions steps. Likewise, not only is it much more computationally efficient to train, but also allows for
non-separable Hamiltonians, which are well outside the scope of this work7.

7Non-separable Hamiltonians are rarely used in applications related to computational statistics. In fact, they usually arise when using
HMC for molecular dynamics written in the internal coordinates of the system.
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5 Results & Discussion

“I think I did pretty well, considering I started out with nothing but
a bunch of blank paper.”

∼ Steve Martin

In this chapter, we present the results of our study on tamoxifen resistance in breast cancer patients. After
introducing the evaluationmetrics used to assess the performance of our prognosticmodels, wewill analyze and
discuss the results of the models developed for predicting the likelihood of treatment resistance in patients. We
will then discuss the potential genetic biomarkers identified by themodels with the help of SHAP explainability
and interpretabilitymethods. Finally, wewill validate our prognostic signature through a survival analysis on an
external set of patients, as well as search for potential associations between our genes and well-known biological
mechanisms.

5.1 EvaluationMetrics

Before we delve into the results of our study, it is important to understand the evaluation metrics used to assess
the performance of our prognostic models. The choice of evaluation metrics is crucial in the context of imbal-
anced datasets, such as the one we are dealing with in this study, where only around 30% of the patients exhibit
resistance to tamoxifen. In such cases, accuracy is not a reliable metric for evaluating the performance of the
models. For instance, a model that predicts all patients as non-resistant would still achieve an accuracy of ∼70%,
which is not desirable. Therefore, we use a combination of evaluation metrics that are more suitable and in-
formative for imbalanced datasets, such as precision, recall, specificity, 𝐹1 score, and the quite robust Matthews
Correlation Coefficient (MCC). These metrics are defined as follows:

• Accuracy: The ratio of correctly predicted observations to the total observations.

Accuracy = TP+TN
TP+TN+ FP+ FN (5.1)

• Precision: The ratio of correctly predicted positive observations to the total predicted positive observa-
tions.

Precision = TP
TP+ FP (5.2)

• Recall/Sensitivity: The ratio of correctly predicted positive observations to all observations in the ac-
tual class.

Recall = TP
TP+ FN (5.3)
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Figure 5.1: Relationship Between the MCC and 𝐹1 Score for All the 21,084,251 Possible ConfusionMatrices for a
Dataset with 500 Samples. (Extracted from [164])

• Specificity: The ratio of correctly predicted negative observations to all observations in the actual class.

Specificity = TN
TN+ FP (5.4)

• 𝐹1 Score: The weighted average (harmonic mean) of Precision and Recall.

𝐹1 = 2 × Precision × Recall
Precision + Recall (5.5)

• Matthews Correlation Coefficient (MCC): Provides a robust measure — especially for imbalanced
datasets — ranging from −1 (perfect inverse prediction) to +1 (perfect prediction), with 0 indicating a
random prediction. In essence, the binary-class MCC in Eq. (5.6), is closely related to a 𝜒2-statistic over
the confusionmatrixℳ, andmeasures the correlation between the observed and predicted classifications
[163].

MCC = TP ⋅TN− FP ⋅ FN
√(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(5.6)

Likewise, the metric incorporates class imbalance and, unlike the 𝐹1 score in Eq. (5.5) and other related
metrics above, is invariant to class swapping. Moreover, it can be shown that the 𝐹1 score is independent
of TN, and in cases where the model performs well with only one of the classes, the two measures can
be highly discordant [164]. To put this into context, Figure 5.1 summarizes this peculiar relationship
between the two metrics for all the possible confusion matrices of a dataset with 500 samples.
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When there are more than two classes, the MCC is defined as in Eq. (5.7).

MCC =
𝑐 ⋅ 𝑠 −

𝛫

∑
𝑘
𝑝𝑘 ⋅ 𝑡𝑘

√(𝑠2 −
𝛫

∑
𝑘
𝑝2𝑘 )(𝑠2 −

𝛫

∑
𝑘
𝑡2𝑘 )

(5.7)

where 𝑐 is the number of correctly predicted samples, 𝑠 is the total number of samples, 𝑡𝑘 is the number
of actual occurrences of class 𝑘, and 𝑝𝑘 is the number of times class 𝑘was predicted by the model [165].

Most importantly, in the context of our work, we will mainly focus on the MCC and the recall (or sensitivity)
metric for evaluating our prognostic models. First, as we have mentioned, the MCC is an extremely robust
metric when dealing with imbalanced datasets, and is quite sturdy— as well as informative of the quality of the
predictions in ambiguous cases—as a classificationmetric. Second, the recallmetric is particularly important in
the context of our study, as we are more interested in identifying patients that are resistant to tamoxifen, rather
than those that are not. In other words, we are more concerned with the true positives (TP) and false negatives
(FN) than with the true negatives (TN) and false positives (FP). This is because, in the context of tamoxifen
resistance, it is more critical to prioritize identifying patients that are resistant to the drug, rather than those
that are not. In this case, as usual in the critical context of health-related models, we want to be as sure as
possible that our model is capable of discerning the most unfavorable scenario [166], i.e., we would rather
wrongfully predict a bad prognostic outcome, thanmiss an actual one, potentially putting a patient’s life at risk
and wasting 5 critical years with a useless treatment.

5.2 Results of Tamoxifen Prognosis Models

To evaluate the performance of our prognostic models, we employed a Stratified 5-Fold Cross-Validation (CV)
approach to ensure that each foldmaintained the original class distribution, i.e., our ∼30% resistant, ∼70% non-
resistant ratio. Stratification is critical for imbalanced datasets, as it prevents scenarios where certain folds lack
representation of the minority class, which generally bias performance estimates. Likewise, all models were
trained as well on the augmented dataset, in which we applied Synthetic Minority Oversampling Technique
(SMOTE) [167] to balance the classes, generating synthetic samples for the resistant class while retaining the
original instances. This allowed us to assess whether addressing class imbalance—which had not been done in
previous studies [37]— improvedmodel robustness, particularly in identifying true positives. Eachmodel was
trained and evaluated on both the original and augmented datasets to isolate the impact of augmentation.

The results of the models are summarized in Tables 5.1 — which includes the traditional shallow models,
ensemble methods, and neural network architectures — and 5.2, encompassing all the Bayesian models. Like-
wise, Figure 5.2 shows the recall/sensitivity metric, while Figure 5.3 summarizes the Matthew’s Correlation
Coefficient (MCC) for each model, in both cases differentiating between the original and augmented datasets.
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Table 5.1: Performance of Tamoxifen Point-Estimate Prognostic Models (Average Across 5-Folds of Stratified CV)

Precision Recall/Sensitivity Specificity 𝐹1 MCC Accuracy

Traditional ShallowModels

Logistic Regression 0.551 0.367 0.842 0.351 0.193 0.700

▶ Augmented Dataset 0.778 0.763 0.720 0.728 0.533 0.740

SVC (Linear Kernel) 0.517 0.367 0.803 0.338 0.150 0.675

▶ Augmented Dataset 0.760 0.720 0.681 0.668 0.468 0.700

SVC (RBF Kernel) 0.800 0.167 0.922 0.180 0.090 0.679

▶ Augmented Dataset 0.853 0.681 0.840 0.724 0.564 0.760

Naive Bayes 0.633 0.533 0.880 0.567 0.431 0.779

▶ Augmented Dataset 0.860 0.682 0.844 0.698 0.573 0.760

Ensemble Methods (Bagging1, Boosting2)

Random Forest1 0.607 0.367 0.840 0.374 0.209 0.700

▶ Augmented Dataset 0.828 0.840 0.760 0.808 0.645 0.800

Hist-Gradient2 1.000 0.000 1.000 0.000 0.000 0.679

▶ Augmented Dataset 0.769 0.680 0.762 0.681 0.487 0.720

AdaBoost2 0.587 0.600 0.800 0.563 0.416 0.750

▶ Augmented Dataset 0.839 0.761 0.760 0.765 0.569 0.760

XGBoost2 0.426 0.217 0.840 0.208 0.010 0.643

▶ Augmented Dataset 0.903 0.722 0.880 0.769 0.645 0.800

Neural Network (NN) Architectures

MLP-1Layer 0.617 0.367 0.842 0.351 0.219 0.696

▶ Augmented Dataset 0.748 0.761 0.687 0.715 0.491 0.720

MLP-2Layer 0.900 0.633 0.920 0.648 0.581 0.839

▶ Augmented Dataset 0.914 0.962 0.880 0.933 0.844 0.920

Autoencoder 0.800 0.367 0.920 0.382 0.290 0.754

▶ Augmented Dataset 0.927 0.960 0.921 0.942 0.883 0.940

Variational Autoencoder 0.520 0.333 0.840 0.393 0.200 0.675

▶ Augmented Dataset 0.870 0.920 0.840 0.886 0.778 0.880
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Table 5.2: Performance of Tamoxifen Bayesian Prognostic Models (Average Across 5-Folds of Stratified CV)

Precision Recall/Sensitivity Specificity 𝐹1 MCC Accuracy

Bayesian Models w/ Hamiltonian Monte Carlo (HMC) Posterior Sampling

BLR-HMC 0.520 0.433 0.768 0.364 0.180 0.675

▶ Augmented Dataset 0.748 0.768 0.682 0.715 0.491 0.720

BLR-GHMC 0.550 0.433 0.800 0.386 0.215 0.700

▶ Augmented Dataset 0.802 0.760 0.760 0.743 0.565 0.760

BLR-(G)HMC (s-AIA2) 0.550 0.433 0.800 0.386 0.215 0.700

▶ Augmented Dataset 0.802 0.760 0.760 0.743 0.565 0.760

BLR-(G)HMC (s-AIA3) 0.550 0.433 0.800 0.386 0.215 0.700

▶ Augmented Dataset 0.802 0.760 0.760 0.743 0.565 0.760

Bayesian Neural Networks (BNNs) w/ Reparametrization Trick for Gradient Estimation

BNN-1Layer 0.550 0.367 0.842 0.351 0.193 0.700

▶ Augmented Dataset 0.734 0.761 0.640 0.704 0.458 0.720

BNN-2Layer 1.000 0.833 1.000 0.893 0.878 0.946

▶ Augmented Dataset 0.967 0.964 0.960 0.956 0.927 0.960

Synthetic Minority Oversampling Technique (SMOTE)

SMOTE [167] is an oversampling technique used to address class imbalance in datasets. It works by
generating synthetic samples for the minority class. This is achieved by selecting a sample from the
minority class and finding its 𝑘 nearest neighbors. Synthetic samples are then created by interpolating
between the selected sample and its neighbors. This helps to balance the class distribution and improve
the performance of Machine Learning models on imbalanced datasets. Formally, given a dataset𝒟 =
{(x𝑖, 𝑦𝑖)}𝛮𝑖=1, where x𝑖 ∈ ℝ𝑑 is a feature vector and 𝑦𝑖 ∈ {0, 1} is the class label, SMOTEworks as follows:

1. For each sample x𝑖 in the minority class, find its 𝑘 nearest neighbors (also in the minority class).

2. Randomly select one of the neighbors, x𝑛𝑛, and compute the difference vector d = x𝑛𝑛 − x𝑖.

3. Generate a synthetic sample x𝑠𝑦𝑛𝑡ℎ = x𝑖 + 𝜆 ⋅ d, where 𝜆 ∈ [0, 1] is an interpolation coefficient.

4. Repeat the process for all samples in the minority class until the desired balance is achieved.

SMOTE is a powerful technique for addressing class imbalance, but it is important to be cautious when
using it: generating toomany synthetic samples can lead to overfitting (and loss of generalization), while
generating too few may not effectively balance the classes.
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Figure 5.2: Recall/Sensitivity byModel (Average Across 5-Folds of Stratified CV) (In Gray, the Baseline from [37])

Across all models, data augmentation consistently enhanced performance, with the most dramatic improve-
ments observed in neural networks andBayesian architectures. For instance, the 2-layerMLP achieved anMCC
of 0.844 and recall of 0.962 on augmented data, compared to 0.581 and 0.633 on the original imbalanced
dataset. Similarly, the Autoencoder model exhibited a remarkable MCC of 0.883 and recall of 0.960 after
augmentation, or the XGBoost model, which improved from an MCC of 0.010 to 0.645. This widespread
tendency across all instances suggest that addressing class imbalance is crucial for improving the robustness of
models in identifying tamoxifen resistance. For instance, just by looking at the recall metric, as in Figure 5.2,
we can see that the majority of models exhibit a significant improvement in identifying resistant patients af-
ter data augmentation. This is particularly important in the context of tamoxifen resistance, where correctly
identifying resistant patients is crucial for their treatment and care. More interestingly, the prior work upon
which this study is based [37] did not address class imbalance, and the model developed in that study exhibited
poor performance in identifying resistant patients (see the gray line in Figure 5.2, with a recall of 0.367). Our
results suggest that, by addressing this simple class imbalance, we can significantly improve the performance of
prognostic models for tamoxifen resistance, even doubling the recall rate in some cases.

Regarding the different model architectures, the superiority of neural networks (both Bayesian and point-
estimate) is attributed to their capacity to learn hierarchical representations from high-dimensional (genetic)
data. The 2-layer MLP, for example, exploited augmented data to achieve a recall of 0.962 and an MCC of
0.844, suggesting robust generalization. Similarly, the Autoencoder’s reconstruction-based training likely en-
hanced its discriminative power for rare resistant cases, yielding an MCC of 0.883. Bayesian models further
distinguished themselves by coupling high recall with calibrated uncertainty estimates. The BNN-2Layer not
only achieved the highest recall but also provided posterior distributions for predictions, a critical feature for
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Figure 5.3: MCC byModel (Average Across 5-Folds of Stratified CV) (In Gray, the Baseline from [37])

clinical scenarios requiring risk stratification. Traditionalmodels, however, exhibitedmoremodest gains. While
augmentedRandomForest improved recall to 0.840, kernel-basedmethods like SVC (RBF) plateaued at 0.681,
underscoring their limitations in imbalanced, high-dimensional settings. Notably, XGBoost prioritized preci-
sion (0.903) over recall (0.722), reflecting a conservative strategy ill-suited to clinical contexts where missing
resistant cases carries significant risk.

Furthermore, our experiments further elucidate thebenefits ofprobabilisticmodeling, particularlyBayesian
Neural Networks (BNNs), demonstrated significant improvements in performance metrics compared to tra-
ditional models. For instance, the 2-layer BNN achieved an MCC of 0.927 and a near-perfect recall of 0.964
on the augmented dataset, suggesting robust uncertainty quantification alongside high predictive power. In-
terestingly, the Bayesian Logistic Regressions withHamiltonianMonte Carlo (BLR-HMC)methods—which
integrate patient RNA-seq data with priors for each gene extracted from the expression analysis on the lab-
grown cell-lines— reached a performance plateau of 0.565MCC and 0.760 recall on the augmented data. This
suggests that, contrary to prior beliefs, the added information from RNA-seq data might not be as impactful
as initially anticipated.

However, the superior performance of augmentedmodelsmust be interpretedwith caution. While SMOTE
mitigates class imbalance, synthetic samplesmaynot fully representbiological variability. The high specificity
(>0.84) and recall (>0.92) of top-performing models like the Autoencoder suggest minimal overfitting, but
external validation on independent cohorts is essential to confirm generalizability. Nevertheless, our results
establish a compelling precedent for integrating data augmentation and probabilistic modeling in prognostic
tasks involving imbalanced biomedical data.
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Discussion on the Tamoxifen Prognosis Models

Althoughwe could fill countless pages based onmeaningless pairwise comparisons between the different
models above, let us try instead to dissect all of these results, and hopefully, shed some light into what
we have been able to achieve, and of course, our limitations…

1. On the Wonders of Data Augmentation... As we have already discussed, data augmentation
has had quite a remarkable impact in our study. In all cases, themodels trained on the augmented
dataset outperformed those trained on the original data. This is particularly evident in some of
the neural network architectures, where near-perfect recall rates were achieved after data augmen-
tation. Although quite trivial, this simple step had not been taken in the prior work upon which
this study is based [37], and the results here suggest that it is crucial for improving the robustness
of models in identifying tamoxifen resistance.

Nevertheless, it is important to note that, while data augmentation has significantly improved
the performance of our models, it might be limiting in terms of biological variability. Synthetic
samples generated by SMOTEmay not fully represent the underlying biological variability in the
data. Therefore, it is essential to validate the models on independent cohorts (such as additional
patient samples from other cancer repositories) to ensure their generalizability.

2. Different Architectures Perform Very Differently... It is not surprising that different model
architectures perform very differently in our study. As we would expect, neural networks usually
outperform ensemble methods, which in turn outperform traditional shallow methods. How-
ever, even a simple logistic regression or random forest, with proper data pre-processing, can out-
performmany of the muchmore powerful and robust methods. This is a classic case ofOccam’s
razor, where simpler models are preferred to complex models, either due to bias-variance trade-
offs, computational efficiency, or interpretability [168, 169]. In this case, it seems that some of
the simpler models are more than enough to achieve the desired performance, andmore complex
models are muchmore demanding to train and validate; for instance, requiring a GPU andmore
sophisticated training techniques.

3. On the Sensitivity of Models to Class Imbalance... On the same line, deeper architectures,
such asMLP-2 andBNN-2, seem to be less sensitive to class imbalance, whereas shallowone-layer
neural networks (e.g., Autoencoder, VAE, MLP-1, BNN-1Layer) appear to be quite sensitive to
class imbalance and severely improve when using the augmented dataset. Ensemble methods,
such as Random Forest or XGBoost, perform very robustly when dealing with the augmented
dataset yet are extremely sensitive to this imbalance and perform incredibly poorly when deal-
ing with the original data. Nonetheless, we cannot be completely certain that the improvements
observed in the augmented dataset are solely due to the correction in the class imbalance, as the
models might have also learned more complex patterns in the data due to the augmentation in
training samples. As you might remember from Section 4.1, we are dealing with as few as 37
patients! Are we actually correcting for class imbalance or just for the lack of available data?
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4. Regarding Bayesian Modeling... As previously stated, Bayesian models have shown to be
quite robust in our study. Consistently outperforming point-estimatemodels, BNNs, VAEs, and
BLRs with HMC sampling, have shown to be particularly effective in identifying tamoxifen re-
sistance. The BNN-2Layer, in particular, achieved the best results acorss all methods, achieving
a near-perfect recall of 0.964 and an MCC of 0.927 on the augmented dataset. This suggests
that Bayesian models are not only more robust in dealing with imbalanced datasets but also pro-
vide calibrated uncertainty estimates, which are crucial for clinical scenarios requiring risk strati-
fication: i.e., where correctly identifying resistant patients is crucial for their treatment and care.
However, it is important to note that Bayesianmodels are computationally expensive and require
more sophisticated training techniques, such as Hamiltonian Monte Carlo (HMC) sampling or
parametrical approaches, as you may recall from Section 4.5.5.

5. On the Integration of Multi-Source Data... However, this study raises a critical question:
Is the added information from RNA-seq data as impactful as initially anticipated? The BLR-
HMCmodels, which integrate patientRNA-seqdatawithpriors for each gene extracted fromthe
expression analysis on the lab-grown cell-lines, reached a performance plateau of 0.565MCCand
0.760 recall on the augmented data, across its variants. This suggests that the added information
from RNA-seq data might not be as impactful as initially anticipated. This is quite interesting,
as it suggests that the genetic information from the cell-lines might not be as relevant as initially
thought. This raises the question of whether the genetic information from the cell-lines is truly
representative of the genetic information from the patients, and whether it is truly relevant in
predicting tamoxifen resistance. This is a critical question that warrants further investigation...

Aside from wondering whether our initial supposition for integrating multi-source sequencing
data is correct— i.e., that patients with a positive clinical response can be considered comparable
to control cells in theMCF7 cell-lines, whereas resistant patients in the TCGA group of patients
can be considered comparable with TamR cells in the MCF7 cell-lines — we can still consider
our study as a success. We have been able to develop a series of models that significantly out-
perform the prior work upon which this study is based, and have shown that by addressing class
imbalance, we can significantly improve the performance of prognostic models for tamoxifen re-
sistance. More so, we have shown the powerful benefits of using Bayesian models, particularly
Bayesian Neural Networks, which, although not originally at the core of our study, have shown
to be quite robust in this context, yielding almost perfect recall.

6. Regarding Previous Work... Finally, a quick word on the prior work upon which this study is
based [37]. The model developed in that study exhibited poor performance in identifying resis-
tant patients, with a recall of 0.367 and an MCC of 0.290. This is quite remarkable, as it shows
that simple steps, such as addressing class imbalance, can have a significant impact on the per-
formance of these prognostic models. This is a critical lesson and highlights the importance of
considering class imbalance in the development of models, particularly in such critical contexts.
However, despite the improvements observed in our study, mostly in terms of pre-processing
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andmodel selection, we can observe that the prior work had a higherMCC than our BLR-HMC
model (without the augmentation), suggesting that the signature distillation process might have
been more effective in identifying tamoxifen resistance. Which criterion should we use then? The
MCC as a robust metric or the recall due to the critical context of our work? Luckily, we don’t
have to choose, as we have many models that considerably outperform the previous approach.
Nonetheless, this is a critical question that warrants further investigation... Are these signature
model-specific? How do our models perform when using the same signature distillation process?

5.3 Identification of Potential Genetic Biomarkers

Once we have trained and evaluated our prognostic models to identify patients who develop a resistance to
tamoxifen therapy, we can now proceed to identify key potential genetic biomarkers that are behind this resis-
tance phenomenon. To do so, we can exploit SHAP (SHapley Additive exPlanations) values [170]: a post-
hoc explainabilitymethod that provides a game-theoretic approach to explain individual predictions ofMachine
Learning models by quantifying the contribution of each feature to the prediction of a model. SHAP values
are rooted in cooperative game theory, and fairly distribute the difference between a model’s prediction and a
baseline expectation (i.e., the average) across all input features. Applying this methodology allows us to identify
the most important genes that potentially contribute to the development of resistance to tamoxifen in breast
cancer cells.

Importantly, we need to clarify something; the SHAPvalues are not causal in nature, but rather correlational.
They provide a measure of the importance of each feature in the prediction of the model, but do not imply a
causal relationship between the feature and the outcome. In this context, the SHAP values will help us identify
the most important genes that contribute to the development of resistance according to the predictions of our
models, but further experimental validation should be required to establish a causal relationship between these
genes and tamoxifen resistance.

As for the use of SHAP explainability in this work, we intend this to be a proof-of-concept study, where wewill
identify themost important genes that contribute to the development of resistance to tamoxifen in breast cancer
cells using one of our best-performingmodels, theRandomForest classifier (using the augmented dataset)1. We
will then compare these results with the genes identified in prior work and in related biological studies, in order
to assess the consistency of the genes identified by our model, and potentially identify new genetic biomarkers
that were not previously considered.

Figure 5.4 presents the global gene contribution, showing the mean absolute SHAP values across all patients
(both resistant and non-resistant), highlighting the overall importance of each gene in predicting tamoxifen re-
sistance. Figure 5.5 focuses on the resistant cohort—more specifically, although all samples are considered, the
SHAP values are computed according to the probabilities of belonging to the resistant class—with a beeswarm
plot illustrating the impact of each gene on themodel’s prediction, and a heatmapdisplaying gene contributions
across individual instances. Lastly, Figure 5.6 provides the local gene contributions for two sample patients (one

1We have decided to use this model instead of a more complex one, such as a Bayesian Neural Network, due to the limitations of
the SHAP library in handling Bayesian models or neural networks when dealing with probabilistic predictions. In fact, the SHAP
library has trouble handling most classification models in Scikit-Learn when we ask it to work with classification probabilities.
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resistant and one with a favorable treatment outcome), with waterfall plots detailing the per-gene contribution
and decision plots showing the cumulative effect of genes on the model’s prediction.

SHapleyAdditive exPlanations (SHAP) Values

SHAP values [170] provide a game-theoretic approach to explain individual predictions of machine
learning models by quantifying the contribution of each feature. Rooted in cooperative game theory,
SHAP values fairly distribute the difference between a model’s prediction and a baseline expectation
across all input features. Formally, for a model 𝑓 and input instance x, the SHAP value 𝜙𝑖 for feature 𝑖
is computed as:

𝜙𝑖 = ∑
𝑆⊆𝐹∖{𝑖}

|𝑆|!(|𝐹| − |𝑆| − 1)!
|𝐹|!

(𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)) (5.8)

where 𝐹 is the set of all features (|𝐹| = 𝑀), 𝑆 is the subset of all features excluding 𝑖, and 𝑓(𝑆) is the
expected model output conditioned on the feature subset 𝑆.
SHAP values satisfy three key properties:

1. Local Accuracy: 𝑓(x) = 𝜙0 +
𝛭

∑
𝑖=1

𝜙𝑖, where 𝜙0 = E[𝑓(x)]

2. Missingness: 𝜙𝑖 = 0 for missing features

3. Consistency: If a feature’s marginal contribution increases, its SHAP value never decreases

Common implementations include:

• KernelSHAP: Model-agnostic approximation using weighted linear regression

• TreeSHAP: Polynomial-time exact computation for tree-based models, exploiting the structure
of decision trees

• DeepSHAP: Deep learning-specific approximation using backpropagation

While SHAP provides theoretically grounded explanations, its computational complexity 𝒪(2𝛭)mo-
tivates approximate methods. The choice of background distribution for computing 𝜙0 significantly
impacts interpretation quality.

First, let us take a look at the global feature importance plot in Figure 5.4. The variables displayed in the vertical
axis correspond to the features of the model, i.e., our genes, whose global importance is greatest in the predic-
tions: i.e., the absolute value of the SHAP coefficients, disregarding whether it impacts positively or negatively
the predictions. As it stands, we can observe that, overall, the genetic biomarker with the greatest impact on
assessing whether a patient is resistant to tamoxifen is the CISH gene, followed by BCAS1, FRAS1, FIRRE,
MGAT5B,HERC1, SYNPO2L,TMC7,VTN, and INSIG2. These genes are well-known in the context of
breast cancer prognostic modeling. For instance, [171] showed that CISH overexpression was associated with
better metastasis-free outcomes, [172] demonstrated that BCAS1 is significantly relevant in the proliferation
and metastasis of breast cancer, as did [173] showing the role of this gene in the proliferation of MCF7 cancer-
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Figure 5.5: Gene Contribution in Resistant Cohort: Per-Gene SHAP Values in the Resistant Group
(Left: Beeswarm Plot of Impact in Model Prediction,Right: Gene Contributions Across Instances)

ous cells. Moreover, [174] found the BCAS1 gene among a 4-gene signature of differentially expressed genes
related to tamoxifen resistance in mammary carcinoma cells. Most recently, [37] also found the VTN, TMC7,
INSIG2, HERC1, and FRAS1 genes among their succinct 6-gene signature, overperforming previous existing
signatures in the analysis of the TCGA dataset.

Regarding the specific predictionsmade by themodel as to whether a patient is resistant to tamoxifen, Figure
5.5 shows the SHAP contributions in terms of the expression value of each gene2. The beeswarm plot on the
left-hand side shows the impact of each gene on the model’s prediction, with the genes ordered by their mean
SHAP value across all patients. The heatmap on the right-hand side displays the gene contributions across in-
dividual instances. As we can see, the CISH gene has the greatest discerning power in the model’s predictions,
lower expressions of the gene being associated with a higher probability of resistance to tamoxifen, while higher
expressions are associated with a lower probability of resistance. For the other genes in our signature, the oppo-
site is true: higher expressions are associated with a higher probability of resistance, while lower expressions are
associatedwith a lower probability of resistance. From the figure on the right, we can see that an over-expression
of the CISH gene carries most of the weight in the model’s predictions of a low resistance probability.

2Note that the expressions were normalized and thus do not correspond directly to the values in the gene count matrix.
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Favorable Treatment) (Left: Waterfall Contribution Plots,Right: Decision Contribution Plots)

Finally, we can take a closer look at the local gene contributions for two sample patients in Figure 5.6. The top
row corresponds to a patient predicted to be resistant to tamoxifen (𝑝(Resistant) = 0.99), while the bottom row
corresponds to a patient with a favorable treatment outcome (𝑝(Resistant) = 0). The left-hand side shows the
per-gene contribution for each patient, with the genes ordered by their SHAP value in the resistant cohort. The
right-hand side shows the cumulative effect of genes on themodel’s predicted probabilities. This allows us to see
how, for each patient, each gene contributes to the model’s prediction and how the cumulative effect of genes
influences the final prediction. In both cases, the average predicted probability across all patient instances (in the
augmented dataset) is drawn (∼ 0.512), with each gene contributing to the deviation towards the probability of
that particular instance (see the gray line in the left plots). For example, for the first patient, the under-expression
of the CISH gene increases the probability of resistance by 15%, followed by the over-expression of the BCAS1
gene increasing it by 9%. On the other hand, in the case of the non-resistant patient, the over-expression of the
CISH gene decreases the probability of resistance by almost 20%. As we can see, however, the genes that have
the greatest impact on the model’s prediction for resistant patients are not necessarily consistent across both
patients.

Kaplan-Meier Survival Analysis & Biological Pathways

Lastly, we can take the analysis of our potential biomarkers one step further by incorporating survival analysis on
other available breast cancer datasets— in order to assess the prognostic value of these genes— or by exploring
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the biological pathways inwhich these genes are involved, using tools such as Enrichr [175–177], to gain insights
into the underlying mechanisms in which these genes participate.

In terms of genetic survival analysis, the Kaplan-Meier method (available here) is a non-parametric statistic
used to estimate the prognosis of patients in terms of survival rates. It is a useful tool for comparing the survival
of two ormore groups, and can be used to assess the prognostic value of genetic biomarkers in breast cancer. By
analyzing the survival curves of patients with high and low expression of the identified genes, we can determine
whether these genes are associated with differences in patient survival. In our case, this serves as an independent
validation tool to assess the prognostic relevance of our genetic biomarkers in an independent set of patients. Of
course, in order to maintain the context of our study, the selected patients are also ER+ breast cancer patients
whohaveundergone tamoxifen therapy. Bydoing so,we can run aKaplan-Meier survival analysis on the selected
genes over 178 new external validation patients.

Figure 5.7 shows the Kaplan-Meier survival curve for the identified genes in tamoxifen-treated ER+ breast
cancer patients. The survival curve is split into two groups based on the mean expression of each gene: high
expression (red) and low expression (black). The y-axis represents the probability of (relapse-free) survival, while
the x-axis represents the time in months. The log-rank test is used to determine whether there is a significant
difference in survival between these two groups. A 𝑝-value less than a given significance threshold 𝛼, e.g., 0.05,
indicates a statistically significant difference in survival between the high and low expression groups; whereas the
HR (HazardRatio) provides ameasure of the risk in the high expression group compared to the low expression
group. Specifically, the survival curve reveals a clear separation between the high and low expression groups of
the gene signature, with the high expression group exhibiting a lower probability of relapse-free survival over
time (i.e., they are more likely to relapse compared to the low expression group). The log-rank test indicates a
statistically significant difference in survival between the two groups (𝑝 = 0.032 < 𝛼). The hazard ratio (HR)
is 2.67 (95% CI: 1.05 – 6.79), suggesting that patients with high expression of the gene signature are associated
with a 2.67 times greater risk of relapse compared to those with low expression. This result indicates that the
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combined expression of the identified genes— including the CISH gene whichwas found to be underexpressed
in patients developing resistance to tamoxifen in our SHAP value analysis — is significantly associated with
ER+ patients developing resistance to tamoxifen therapy and experiencing relapse. Nonetheless, this kind of
analysis shouldbe taken asmorequalitative thanquantitative. First, the sample size remains quite small, and the
results should be interpretedwith caution. Second, we donot know if the patients underwent the full treatment
regime, if they also received chemotherapy, or if they had other comorbidities that could have influenced the
results. Third, this analysis does not take into account the individual expression of each gene, but rather the
mean expression of all the genes in the signature, disregarding differences in terms of over/under-expression.
Lastly, the resulting confidence interval for theHR is quite wide, indicating some uncertainty in themagnitude
of the risk increase.

Finally, we can explore the biological pathways in which these genes are involved using Enrichr, a web-based
tool for gene set enrichment analysis (available here). Enrichr provides a large collection of gene set libraries and
tools for pathway analysis, allowing us to identify the underlying biological pathways andprocesses inwhich our
genesmight be involved. By analyzing the enrichedpathways, we canhopefully gain insights into the underlying
mechanisms in which these genes participate. For instance, these genes appear to be involved in the Human
ECM-receptor interaction pathway (remember Figure 3.2), which has been shown to play a critical role in breast
cancer progression and survival [178–180]; and in the Interleukin-7 (IL-7) signaling pathway, also known to be
involved in promoting breast cancer cell proliferation [181–184]. Unfortunately, our signature is quite small
and thus it is difficult to extract any meaningful pathways from the analysis. Likewise, there are no reported
pathways related to tamoxifen resistance in the Enrichr database, whichmakes it difficult to interpret the results.
Furthermore, understanding and interpreting the biological mechanisms in which these genes are involved is a
complex task that requires a deep understanding in the field of genetics and cellular biology, which is far beyond
the scope of this study.
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6 Planning, Budgeting & Ethical
Considerations of the Project

“It’s the job that’s never started that takes longest to finish.”

∼ J.R.R. Tolkien, The Lord of the Rings: The Fellowship of the
Ring (1954) [185]

In this chapter, we present the planning, budgeting, and ethical considerations of the project. First, we present
the human resource plan, where we define the roles and responsibilities of the members involved in the project.
Then, we present the working plan, where we define the tasks and milestones of the project, as well as the
relevant dates and chronogram of the project. After that, we will focus on the budget of the project, where
we present the estimated costs of the project broken down by category. Finally, we provide a reflection on the
ethical considerations of the project, including the responsible use of clinical data and open-source software,
patient privacy protection in breast cancer research, and the potential impact of our project on the patients,
society, and the healthcare system.

6.1 Planning & Budgeting of the Project

As illustrated in Figure 6.1, the successful execution of our project requires careful planning and a thorough un-
derstanding of the resources and human capital needed to achieve the project objectives. This section outlines
the key aspects of project management, including the human resources involved, the detailed working plan,
and the financial considerations. The planning approach follows standard project management methodologies
while being specifically tailored to the unique requirements of our tamoxifenmodeling task. We hereby present
a comprehensive overview of how the project will be structured and executed, ensuring that all technical, hu-
man, and financial resources are optimally utilized to achieve the project objectives.

6.1.1 Human Resource Plan

Before we can start developing the working plan and the budget, we need to carefully outline the human re-
sources involved in the project. Despite the complexity of the project in terms of its wide scope — the work
presented here as our thesis is only a small subset of what has been done in the whole project, and thus some
of the tasks, such as those involving the RNA sequencing, were not explicitly performed for this work — and
multi-institutional nature, we summarize in Table 6.1 below, to the best of our knowledge, the critical roles and
responsibilities of themembers involved in the project aswell as the relevant skills and expertise of eachmember.

The project brings together a diverse team of experts from three key institutions, each contributing their
unique expertise to ensure the project’s success. At theUniversity ofDeusto, theThesis Supervisor provides aca-
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Human Resources
(Roles & Responsibilities)

Working Plan
(Tasks & Milestones)

Budget
(Resource Allocation)

Successful Project
Design & Management

Figure 6.1: Key Components of Project Management & Their Relationship to Project Success

demic oversight and validates the researchmethodology, while the Student (who also serves as the Researcher at
BCAM) is responsible for the core technical implementation, including mathematical modeling, data analysis,
and exhaustive documentation of the developedmethods. Moreover, he is also responsible for the development
of the computationalmethods, including the implementation of theHamiltonianMonteCarlo algorithms, the
development of the pyHaiCS library, and the integration of biological knowledge with mathematical models.

Conversely, at BCAM, theResearch Supervisor offers technical guidance and expertise in appliedmathemat-
ics and Bayesian modeling in the context of computational biology. The Research Collaborators contribute
specialized knowledge in Bayesian computation, particularly in Hamiltonian Monte Carlo methods, and pro-
vide crucial support for benchmarking as well as insight on the theoretical properties of the proposedmethods.
Last but not least, the CIC bioGUNE Research Center adds essential biological and clinical expertise to the
project. The Clinical Advisor ensures the medical relevance and validity of our findings, while the Lab Techni-
cian handles the technical aspects ofRNA sequencing and sample processing1. TheResearcher in Bioinformat-
ics, with previous experience in developing this type of prognostic models in the context of breast cancer, plays
a crucial bridging role, integrating biological knowledge with mathematical models and providing expertise in
RNA-seq analysis and cellular biology.

This multidisciplinary team structure ensures that our project benefits from expertise across mathematical
modeling, clinical knowledge, and biological understanding, creating a strong and robust foundation for devel-
oping and validating our Bayesian approaches and identifying relevant potential genetic biomarkers responsible
for tamoxifen resistance in the context of ER+ breast cancer patients.

6.1.2 Working Plan

In this section, we present the working plan of the project, including the tasks and milestones of the project,
which outline the systematic approach taken to develop our Bayesian framework for predicting tamoxifen resis-
tance. The plan is structured into threemain phases, eachwith specific objectives andmilestones that alignwith
both the academic requirements of this thesis and the research goals of the project. This structured approach
ensures themethodical development of ourmathematicalmodels, the implementation of computationalmeth-
ods, and the validation of our findings through biological interpretation. The timeline and milestones are de-

1As stated before, all the sequencing was in practice performed for other tasks we developed in the context of our work at BCAM. In
any case, we have decided to include it here as it is a crucial part of the project.
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Table 6.1: Human Resource Plan: Roles, Responsibilities & Expertise

Role Responsibilities Key Skills & Expertise

University of Deusto — Academic Institution

Thesis Supervisor Project supervision and guidance; Aca-
demic oversight; Research methodology
validation

Academic research;Mathematical model-
ing; Projectmanagement; University pro-
cedures

Student Implementation of mathematical mod-
els; Data analysis; Documentation; The-
sis development

Programming; Scientific writing; Data
analysis; Machine Learning

BCAM (Basque Center for Applied Mathematics) — Research & Funding

Research Supervisor
(Project Manager)

Technical guidance; Mathematical model
development; Research methodology

Applied mathematics; Computational
biology; Research supervision

Researcher (Same as
Student Above)

Development of Bayesian models; Imple-
mentation of statistical methods; Data
analysis and visualization; Collaboration
with clinical partners; Scientific docu-
mentation; Research methodology devel-
opment

Mathematical modeling; Scientific pro-
gramming; Statistical analysis; Computa-
tional statistics, Machine Learning

Research Collabora-
tors

Technical guidance on HMC methods;
Benchmarking support for pyHaiCS li-
brary; Methodological insights for de-
ployed algorithms

Bayesian computation; MCMC meth-
ods; Performance optimization; Scientific
software development

CIC bioGUNE Research Center — Research Partner

Clinical Advisor Clinical data interpretation; Biological
validation; Medical insights

Clinical oncology; Breast cancer research;
Medical expertise

Lab Technician RNAsequencing; Sample processing; Ex-
perimental data collection

Laboratory techniques; Molecular biol-
ogy; Data collection

Researcher in Bioin-
formatics

Integration of biological knowledge with
mathematical models; RNA-seq data
analysis; Biological pathway interpreta-
tion

Computational biology; Cellular biol-
ogy; RNA-seq analysis; Mathematical
modeling

signed to accommodate the complexity of themathematicalmodeling processwhilemaintaining academic rigor
and research quality. The three phases are defined as follows:

1. Definition & Planning: This phase includes the definition of the project scope, the development of
the work plan, and the identification of the resources needed to achieve the project objectives.
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Table 6.2: Project Tasks by Phase

Code Task Name Description

Phase 1: Definition & Planning

T1.1 Project Scope Definition Detailed definition of project objectives, milestones, and success cri-
teria. That is, defining the scope of the project

T1.2 Resource Planning Identification and allocation of human, technical, and financial re-
sources (e.g., computational resources, collaborators, travel expenses
to visit CIC bioGUNE, etc.)

T1.3 Kick-offMeeting with CIC
bioGUNE

Collaboration with CIC bioGUNE to discuss the available clinical
data and the biological motivation behind the project

T1.4 State-of-the-art Review Review of the current literature on tamoxifen resistance prediction
and Bayesian modeling in the context of breast cancer diagnosis

T1.5 Domain Knowledge Ac-
quisition

Learning and preparation in key areas: e.g., cellular biology, cancer
research,HamiltonianMonteCarlomethods, andBayesianmodeling

T1.6 RNAData Collection Gathering and organization of multi-source RNA-seq data

Phase 2: Development

T2.1 RNA-seq Pre-Processing Pre-processing of the RNA-seq data to be used for the development
of the models

T2.2 pyHaiCS Library Develop-
ment

Implementation of computationalmethods and algorithms in thepy-
HaiCS library

T2.3 Mathematical Model De-
velopment

Design and implementation of (Bayesian) models for tamoxifen resis-
tance prediction

T2.4 Biological Validation Integration of biological validation knowledge on model predictions
(e.g., biological pathway enrichment analysis, survival analysis, etc.)

T2.5 Documentation Development of technical documentation for pyHaiCS library and
methods

Phase 3: Project Closure & Control

T3.1 Results Presentation Presentation of project results to stakeholders (i.e., project supervisors,
research partners, potential future collaborators, etc.)

T3.2 Thesis Development Writing and preparation of the final thesis document

T3.3 Prepare Defense Preparation of the thesis defense

T3.4 Project Defense Presentation and defense of the thesis project

T3.5 Project Dissemination Publication of results and documentation of project outcomes
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Tasks January February March April May June
Phase 1: Definition & Planning

T1.1. Project Scope Definition

T1.2. Resource Planning

T1.3. Kick-off Meeting with CIC bioGUNE

T1.4. State-of-the-art Review

T1.5. Domain Knowledge Acquisition

T1.6. RNA Data Collection

Phase 2: Development
T2.1. RNA-seq Pre-Processing

T2.2. pyHaiCS Library Development

T2.3. Mathematical Model Development

T2.4. Biological Validation

T2.5. Documentation

Phase 3: Project Closure & Control
T3.1. Results Presentation

T3.2. Thesis Development

T3.3. Prepare Defense

T3.4. Project Defense

T3.5. Project Dissemination

Figure 6.2: Project Chronogram: Tasks &Milestones –Weekly Gantt Chart

2. Development: This phase includes the development of the project deliverables, including the develop-
ment of the mathematical models, the implementation of the computational methods in the pyHaiCS
library, and the analysis of the data. Also, this phase includes the development of the pyHaiCS docu-
mentation, and the biological validation of the proposed models.

3. Project Closure & Control: This phase includes the closure of the project, including the presentation
of the results and the dissemination of the project. Likewise, from the academic perspective, this phase
includes the preparation of the thesis and its defense.

The tasks and phases of the project are presented in Table 6.2, whereas the weekly chronogram for the develop-
ment of the project is presented in Figure 6.2 as a Gantt chart.

6.1.3 Budget of the Project

Once the working plan of our project has been defined, and the human resources involved in the project have
been identified, we can proceed to the development of the budget of the project. In this section, we present
the estimated costs of the project broken down by category. In order to present the budget in a comprehensive
manner, we split the budget into two main groups: technical equipment & travel expenses (including RNA
sequencing), and human resources.

Table 6.3 outlines the projected costs for essential technical equipment (e.g., computing hardware, storage,
accessories), estimated expenses related to RNA sequencing2, and anticipated travel costs for necessary coordi-
nation meetings (e.g., visits to CIC bioGUNE). All listed costs within this table are presented inclusive of the
applicableValueAddedTax (IVA, in Spain). Likewise, complementing thematerial and operational costs, Table
6.4 provides a detailed breakdown of the human resources budget. These costs — reflecting the collaborative
nature of the project by encompassing contributions from all three key institutions: the University of Deusto,
BCAM (Basque Center for AppliedMathematics), and the CIC bioGUNEResearch Center— are calculated
2The costs associatedwithRNA sequencing, including sample preparation, library preparation, and sequencing itself, are estimations
derived frompublicly available vendor information and provided approximations by technical experts. They serve to provide a sense
of scale for these significant experimental costs, rather than representing a precise quote.
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Table 6.3: Technical Equipment & Travel Expenses Budget

Item Quantity Unit Price (€) IVA (21%) Total (€)

Technical Equipment

MacBook Pro Laptop 1 2,199.00 461.79 2,660.79

External SSD 1TB 1 80.00 16.80 96.80

USB-CHub 1 25.00 5.25 30.25

Monitor 1 170.00 35.70 205.70

Other Accessories 1 70.00 14.70 84.70

RNA Sequencing

MCF7 Sample Preparation
(Culture, Extraction, QC) 1 1,500.00 315.00 1,815.00

Library Preparation
(TruSeq Stranded Total RNA) 1 2,400.00 504.00 2,904.00

Cell Sequencing
(Illumina HiScan-SQ, SE50) 1 1,500.00 315.00 1,815.00

Travel Expenses

Taxis to CIC bioGUNE (round trip) 15 30.00 6.30 544.50

Total Technical & Travel Expenses: 10,156.74€

based on the planned hours of dedication for each role and their varying levels of seniority, the corresponding
institutional hourly rates, and an estimated overhead of 30% to account for social security contributions and
other associated employer costs.

As a summary, the total projected cost for technical equipment, RNA sequencing, and travel expenses, as
presented in Table 6.3, amounts to around 10,156.74€. Concurrently, the total estimated cost attributed to
the dedicated human capital, covering personnel from all participating institutions, and detailed in Table 6.4,
is calculated at 16,770.00€. Therefore, summing these figures, the overall estimated budget for the successful
completion of this project should be around the 26,926.74€mark.

6.2 Ethical Reflection & Assessment of the Study

Engineering has always had a long-standing tradition of service to society — as well as an established ethical
obligation to health, safety, and public welfare — and carries inherent ethical obligations and responsibilities
towards the public. We, as engineers, scientists, or researchers, are expected to make decisions and design so-
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Table 6.4: Human Resources Budget (by Institution & Role)

Role Hours Hourly Rate (€) Social Security (30%) Total (€)

University of Deusto — Academic Institution

Thesis Supervisor 40 30.00 360.00 1,560.00

Student/Researcher 400 20.00 2,400.00 10,400.00

BCAM (Basque Center for Applied Mathematics)

Research Supervisor 30 30.00 270.00 1,170.00

Research Collaborators 10 20.00 60.00 260.00

CIC bioGUNE Research Center

Clinical Advisor 20 40.00 240.00 1,040.00

Lab Technician 30 20.00 180.00 780.00

Bioinformatics Researcher 40 30.00 360.00 1,560.00

Total Human Resources: 16,770.00€

lutions that are consistent and compliant with these basic ethical grounds, and “to disclose factors that might
endanger the public or the environment” [186]. This ethical framework is particularly relevant in the field of
biomedical research, where our work has direct implications for patient care and clinical decision-making. In
this section, we reflect on the ethical dimensions of our project and its potential societal implications.

This ethical responsibility is not limited to the technical aspects of our work, but also extends to the social
and environmental dimensions of our research. As engineers, we are responsible for ensuring that our work is
conducted in amanner that respects the rights anddignity of individuals, promotes social justice, andminimizes
harm to the environment. This includes considering the potential impact of our research on vulnerable popula-
tions, ensuring equitable access to healthcare technologies, and promoting sustainability in our work. Besides,
we are not only responsible for the implications of our own work, but also for the work of our organizations
and the broader engineering/scientific community towards clients, employers, and society in general. This re-
sponsibility encompasses a commitment to ethical conduct, transparency, and accountability in all aspects of
our work.

While these spheres of responsibility establish an overall ethical framework for our project, we can further
ground it in terms of the specific principles of professional ethics that should guide our decision-making and
implementation. By applying these principles, we ensure our technical work remains aligned with our ethical
obligations to patients, the healthcare system, and society at large: the stakes not only include scientific advance-
ment but also direct impact on human lives and well-being.
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Three Spheres of Responsibility

Our ethical approach encompasses three interconnected spheres of responsibility:

1. Social Responsibility: Our primary social obligation is to develop tools that genuinely seek to
improve patient diagnosis and understand the underlying mechanisms of tamoxifen resistance.
We aim to create models that can be used in clinical practice, ultimately benefiting patients and
healthcare providers. We recognize that this sort of prediction models can impact treatment de-
cisions with life-altering consequences. Therefore, we prioritize model interpretability alongside
accuracy, enabling clinicians to understand the basis for predictions.

2. Environmental Responsibility: While computational research has a lower direct environmen-
tal impact than laboratory work, we acknowledge the energy consumption of computational re-
sources, specially when training large Deep Learning models. In any case, our study deals with a
very reduced set of data (i.e., 6 sequenced lab cells and less than 40 patients), and the developed
models are designed to be efficient, minimizing the computational burden. We also promote
the use of open-source software, which can reduce the need for expensive proprietary tools and
encourage collaboration.

3. Economic Responsibility: In this line, by developing open-source software and transparent
methodologies, we promote cost-effective research that reduces duplication of efforts and democ-
ratizes access to advanced analytical techniques across institutions with varying resource levels.

Ethical Framework & Principles

Our ethical assessment is guided by four fundamental principles of professional ethics:

• Beneficence: This project aims to benefit breast cancer patients through improved prediction
of tamoxifen resistance, potentially sparing them long ineffective treatments. We uphold profes-
sional competence and integrity by ensuring our models are rigorously tested and validated.

• Justice: We consider the fair distribution of benefits resulting from this research. Access to im-
proved predictive tools should not create or exacerbate healthcare disparities. The open-source
nature of our pyHaiCS library promotes equity by making advanced computational methods
freely available to the research community.

• Autonomy: We respect patient autonomy by ensuring our approach supports informed
decision-making. By providing transparent explanations of our models, we enable clinicians
to properly inform patients, avoiding paternalistic medicine and promoting shared decision-
making.

• Responsibility: We acknowledge both individual and social responsibilities inherent to our
work. As engineers and researchers, we are responsible for the technical validity of our models
and their appropriate application in healthcare contexts.
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In addition to these theoretical ethical and moral foundations, there are also actual practical implications and
design choices that ensure ethical compliance and responsibility throughout the project. These include:

• Data Ethics and Privacy Considerations: Working with genomic and clinical data requires rigorous
ethical safeguards. All patient data used in this project is fully anonymized in compliance with GDPR
(General Data Protection Regulation) and relevant European bioethical frameworks, maintaining no
connection between genetic profiles and patient identities. We exclusively utilize patient data collected
with proper informed consent protocols, where patients understood the potential research applications
of their genetic information. In practice, all patient data used for this study is publicly available and has
undergone every anonymization step required for publication.

• Open Science and Democratization of Technology: Our commitment to open-source development
of the pyHaiCS library aligns with ethical principles of scientific transparency and equitable access. By
making our computational methods freely available, we promote scientific reproducibility, reduce bar-
riers to advanced computational methods for resource-limited institutions, facilitate collaborative im-
provement of methodologies, and accelerate the pace of discovery by enabling others to build upon our
work. This project supports the democratization of technology in healthcare research, potentially reduc-
ing global disparities in cancer research capabilities.

• Potential Societal Impact: The broader societal implications of our work extend beyond individual
patients. More precise prediction of treatment response could reduce healthcare costs associated with
ineffective treatments. Ourmethodological contributionsmay benefit researchers working on other pre-
dictive problems in medicine. By adhering to ethical principles and maintaining transparency, we help
foster public trust in computational approaches to personalized medicine.

Practical Ethical Implementation

Our project translates ethical principles into practical implementation through:

• Privacy Protection: Rigorous anonymization protocols and secure data handling that comply
with GDPR and bioethical frameworks

• Open Science: Development of pyHaiCS as open-source software to democratize access to ad-
vanced analytical techniques

• Transparency:Maintaining interpretablemodels and documentation to support informed clin-
ical decision-making

• Regulatory Alignment: Ensuring compliancewith European frameworks for genetic data han-
dling and biomedical research

Through thesemeasures, we ensure our technical work not only advances scientific knowledge but does
so in a manner that respects patient dignity and upholds the highest standards of research ethics.
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Data Biases & Gender Perspective

As with any study involving clinical data, particularly in the context of breast cancer research where the patient
population is predominantly female and has historically had a severe under-representation of ethnic minorities
[187], it is crucial to acknowledge the potential biases and limitations inherent in the datasets used. While
this project sought to analyze and process information in an impartial manner, several forms of bias may still
persist in the anonymized data, potentially affecting the generalizability of the findings. For instance, ethnic and
socio-economic biases could arise depending on the demographic composition of the source data, particularly if
certain groupswere underrepresented or overrepresented in the sample. Survival bias is also a potential concern,
especially in retrospective datasets where only entities that endured a specific period are available for analysis,
possibly skewing conclusions. Additionally, gender biasmust be acknowledged, particularly if the data or design
reflects historically ingrained gender asymmetries in participation or representation. For example, the TCGA-
BRCA dataset used throughout this work has been criticized for its lack of diversity, particularly in terms of
ethnical representation [188], gender diversity [189]—with a 1 to 100 ratio of male to female patients—, and
socio-economic status [190].

Data Bias & Representation Considerations

It is critical to acknowledge potential biases within our research datasets that could impact the general-
izability and clinical applicability of our findings:

• Demographic Representation: The TCGA-BRCA dataset, though valuable, exhibits notable
limitations in ethnic diversity, with predominant representation ofCaucasian populations [188].
However, it has been shown that survival outcomes and treatment responses can vary significantly
across different ethnic groups [191].

• Survival Bias: Our dataset inherently contains a form of survival bias, as data collection ne-
cessitates patients surviving long enough to provide follow-up information. This may lead to
underrepresentation of the most aggressive resistance phenotypes, potentially skewing our un-
derstanding toward less lethal resistance mechanisms.

• Socio-economic Factors: Access to specialized cancer care and enrollment in research studies
correlates with socioeconomic status, potentially resulting in datasets that incompletely repre-
sent disadvantaged populations. The generalizability of our models may therefore be limited in
resource-constrained healthcare settings.

• Age Distribution: The age distribution within our patient cohort may not proportionally rep-
resent the full spectrum of breast cancer patients, particularly very young or elderly patients who
are often underrepresented in clinical trials and databases.
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Gender Perspective in Breast Cancer Research

While breast cancer predominantly affects women, it is essential to adopt a gender-inclusive perspective
in research in the field. This ensures that the unique experiences and needs of all individuals affected by
breast cancer, including men and transgender individuals, are meaningfully considered.

• Beyond Binary Classifications: Though breast cancer is often framed as a “women’s disease”, it
affects individuals across the gender spectrum. Male breast cancer accounts for approximately 1%
of cases [189], and transgender individuals—particularly those undergoing hormone therapy—
may have unique risk profiles that remain understudied.

• Sex as a Biological Variable:We explicitly acknowledge the distinction between sex as a biologi-
cal variable and gender as a social construct. Treatments like tamoxifen target biological pathways
such as estrogen receptors; however, responses to endocrine therapy can vary based on a range of
factors beyond binary sex assignment, including genetic variation, epigenetic influences, and hor-
mone use in transgender individuals.

• Inclusive Research Design: We advocate for researchmethodologies that intentionally include
diverse gender identities. This enhances the external validity of findings and ensures that clinical
insights are relevant and responsive to the needs of all individuals affected by breast cancer.
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7 Conclusions & FutureWork

“Prince John: ‘Are you finished?’
Sir Robin of Locksley: ‘I’m only just beginning.’”

∼ The Adventures of Robin Hood (1938) [192]

In this final chapter, we synthesize the principal findings related to our deep investigation, through Bayesian
methodologies, into the field of breast cancer treatment, specifically on the challenges presented by tamoxifen
resistance in estrogen receptor-positive (ER+) breast cancer cells. Thismulti-disciplinary endeavor has spanned
a wide range of topics from the fields of cellular biology, bioinformatics, and computational statistics — from
differential expression analysis and biomarker identification, to sophisticatedHamiltonianMonte Carlo imple-
mentations and deep probabilistic modeling; all with the overarching goal of enhancing predictive capabilities
while preserving interpretability. Finally, culminating in the development of a novel Python library, pyHaiCS,
designed to facilitate the implementation of Hamiltonian Monte Carlo (HMC) methods for Bayesian infer-
ence. We summarize below the key findings and contributions of this work, critically assess its strengths and
limitations, and outline promising avenues for future research, delineating bothmethodological and biological
refinements that could potentially further advance the work on precision oncology for breast cancer treatment.

7.1 Conclusions & General Assessment

Throughout this thesis, we embarked upon the challenging task of uncovering potential genetic biomarkers
indicative of tamoxifen resistance in ER+ breast cancer patients through a comprehensive analysis of both cell-
line and patient data combinedwith advanced Bayesianmodeling techniques grounded inHamiltonianMonte
Carlo (HMC) sampling methods. The primary purpose was to move beyond traditional point-estimate ap-
proaches by incorporating prior biological knowledge derived from cell-line experiments into models trained
on patient genomic data, thereby aiming for more robust and interpretable predictions in a context plagued by
data scarcity, high dimensionality, and class imbalance. This work is particularly relevant given the increasing
prevalence of breast cancer and the pressing need for personalized treatment strategies that can effectively ad-
dress the challenges posed by drug resistance and heterogeneity in patient responses, specifically, considering
the long scale of the treatment process of these endocrine therapies. Moreover, a significant component of this
study involved the development of pyHaiCS, our novel Python library specifically designed to facilitate the use
of sophisticated HMC-based sampling techniques within the computational statistics domain.

At the core of our research was the analysis of RNA sequencing data from bothMCF7 cell-line experiments
and The Cancer Genome Atlas (TCGA) patient cohort. This dual approach allowed us to leverage both in-
vitro and in-vivo data, providing a more complete view of the genetic mechanisms underlying this biological
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Bayesian Modeling for Tamoxifen Resistance Prediction
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Figure 7.1: Visual Summary of the Project

phenomenon. The integration of these datasets was not without its challenges, particularly in terms of address-
ing the inherent class imbalance and high dimensionality associated with genomic data. Nonetheless, through
careful and rigorous pre-processing, and a combined differential expression analysis, we were able to identify a
refined set of candidate biomarkers (i.e.,CISH, BCAS1, FRAS1, FIRRE, MGAT5B, HERC1, SYNPO2L,
TMC7, VTN, INSIG2) that exhibited concordant expression changes across bothdatasets. Subsequently, a di-
verse array of predictivemodels was developed and evaluated, ranging fromBayesian LogisticRegression (BLR)
implementedusing variousHMCsamplers (HMC,GHMC, s-AIA tuned)withinpyHaiCS, to traditional shal-
low classifiers, ensemble methods, and deep learning architectures including standardMulti-Layer Perceptrons
(MLPs), Autoencoders, Variational Autoencoders (VAEs), and Bayesian Neural Networks (BNNs). The per-
formance of these models was rigorously assessed using a variety of metrics with a particular emphasis on re-
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call, due to its critical importance in clinical settings where false negatives can have severe consequences, and
Matthew’s Correlation Coefficient (MCC), which provides a robust measure of performance in classification
tasks with imbalanced datasets.

Our key findings highlight the fundamental importance of addressing the class imbalance intrinsic to the
patient dataset (few recorded resistant patients against a majority of sensitive patients) and the potential of
data augmentation techniques to enhance model performance. The application of Synthetic Minority Over-
samplingTechnique (SMOTE) data augmentation techniques consistently, and significantly, improved the per-
formance across all tested models. Notably, probabilistic models, especially BNNs, demonstrated superior per-
formance on augmented data, achieving near-optimal recall and MCC scores. Interpretability analysis, using
SHAP values on a high-performing Random Forest model, identified key genes as major contributors to re-
sistance prediction, aligning with existing literature and providing potential biological insights. Furthermore,
Kaplan-Meier survival analysis on an external cohort of patients provided independent validation of the prog-
nostic relevance of the derived gene signature. However, a crucial observation was the performance plateau of
the BLR-HMC models incorporating cell-line priors, suggesting that the direct transfer of this specific prior
information did not yield the expected improvement over models trained solely on augmented patient data,
hinting towards a potential pitfall in integrating heterogeneous biological data sources and translating cell-line
findings directly to patient populations, as had been done in previous work [37].

As a summary, this work successfully demonstrates the feasibility, and potential benefits, of employing ad-
vanced Bayesian modeling techniques, particularly BNNs, combined with appropriate data augmentation for
predicting tamoxifen resistance. We provide a robust framework for biomarker discovery, model evaluation,
and interpretation, contributing both methodological insights and a practical computational tool (pyHaiCS),
not only for this specific application but also for broader applications in the field of computational statistics.
While the direct integration of cell-line priors proved less impactful than anticipated, the overall results signif-
icantly advance predictive capabilities compared to previous work and, hopefully, lay a strong foundation for
future research. A visual summary of the project is presented in Figure 7.1, illustrating the key components and
findings of our work.

7.2 FutureWork & Promising ResearchDirections

Building upon the findings and limitations of this thesis, several avenues for future research emerge, spanning
both the biological and mathematical modeling domains. Below, we outline some potential directions for fu-
ture work that could be pursued to further enhance our understanding of this resistance phenomenon, and
improve predictive modeling in breast cancer as a whole. All proposed future research directions are summa-
rized in Figure 7.2.

Patient-Centric Signature Discovery Given the observed limitations in directly translating cell-line
priors, future efforts should focus on discovering prognostic signatures derived exclusively from patient data.
This involves exploring the high-dimensional gene space within patient cohorts (e.g., TCGA [188], SCAN-
B [193], or METABRIC [194]) using techniques such as Gaussian Mixture Models (GMMs) — in order to
cluster similarly expressed genes—combinedwith an optimization algorithm to identify themost relevant gene
combination according to somefitnessmetricwithin the gene pool (after previous pruningwithin each cluster).
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Future Research Directions

Patient-Centric Signature
(Gene-Space Exploration)

Develop Resistance Metric
(Experimental Cell Behavior)

Incorporate Clinical Features
(Embeddings + RNA-seq)

Efficient Parameter Tuning
(NUTS, Adaptive Schedules)

Advanced HMC Methods
(e.g., MMHMC)

Mechanistic Interpretability
(Sparse Autoencoders)

Single-Cell RNA-seq Pathway & Enrichment Analysis
(e.g., KEGG, Reactome)

Raw RNA Sequence Modeling
(e.g., EVO2 Model)

Figure 7.2: Visual Summary of Future Work Directions

Thiswould allow, in practice, for the identification of robust, patient-derived,meaningful signatures thatmight
better capture clinical reality. Such approaches can be readily extended to investigate resistance mechanisms for
other endocrine therapies or different cancer types.

RefiningTamoxifenResistanceQuantification The binary classification of resistance, while prac-
tical, oversimplifies the biological reality. Future work could involve developing a continuous resistance metric
by integrating quantitative experimental data from cell lines (e.g., mammosphere formation assays, prolifer-
ation, invasiveness, or migration). This continuous granular score could then serve as the target variable for
regression models to find richer, more biologically grounded results. For instance, Double Machine Learning
(DML) [195] could be employed to estimate the causal effect of our genes on the resistance score, allowing for
a more nuanced understanding of the underlying biology.

Incorporating Richer Clinical Features Our current models rely exclusively on RNA-seq data.
However, publicly available clinical datasets, such as TCGA [188] or METABRIC [194], contain an abun-
dance of additional information including patient records (e.g., age, stage, treatment history), pathological re-
ports, among others. Integrating this information could significantly enhance predictive accuracy. For instance,
Natural Language Processing (NLP) models could be employed to generate embeddings in a latent space from
these clinical features, which can then be fused with the genomic data to improve predictive performance.

Improving Parameter Tuning Methods The current implementation of the s-AIA sampler in py-
HaiCS is computationally expensive and demanding — each iteration requires a full HMC simulation with
a particular set of parameters, and thus a full recompilation of the JAX components. While it demonstrates su-
perior exploration capabilities, its efficiency could be improved. Future work should focus on optimizing these
tuning methods to reduce computational overhead while maintaining, or even improving, sampling efficiency.

101



BayesianModeling of Tamoxifen Resistance in Breast Cancer Cells

This could involve exploring alternative adaptive tuning schemes. For instance, the well-known No-U-Turn
Sampler (NUTS) [72] could be integrated into the library to provide a more efficient alternative.

Exploring Advanced HMC Variants While pyHaiCS currently implements several HMC variants,
there is room for further improvement. Future work could involve implementing more advanced samplers
such as the Mix &Match HMC (MMHMC) [51] presented in Section 3.3, or Langevin-based methods (e.g.,
Stochastic Gradient Langevin Dynamics (SGLD) [155], Stochastic Gradient HMC (SGHMC) [196]). Addi-
tionally, incorporating methods for non-separable Hamiltonians would broaden the library’s applicability to
problems far beyond standard statistical modeling, such asmolecular dynamics, where HMC was originally
conceived. This could also include the implementation of methods that approximate the Hamiltonian using
neural networks as briefly discussed in Section 4.5.5. For instance, those that estimate theHamiltonian directly,
or those methods that, given an initial position and momentum, will estimate the resulting momentum and
position after the integration process.

Mechanistic Interpretability The current SHAP analysis provides valuable insights but represents
only a starting point for understanding the model’s internal decision-making process. Future workmight delve
deeper into the mechanistic interpretability of the deep learning models, for instance by employing state-of-
the-art techniques such as Sparse Autoencoders (SAEs) [197–199] to analyze the internal representations and
activations of the learned models.

From Bulk to Single-Cell RNA-seq The current analysis is based exclusively on bulk RNA-seq data,
which aggregates gene expression across all cells in a sample. However, single-cell RNA-seq (scRNA-seq) pro-
vides a more granular view of gene expression at the individual cell level. Future work could involve adapting
our models to analyze scRNA-seq data, allowing for a more detailed understanding of cellular heterogeneity
and its implications for tamoxifen resistance.

Gene Set Enrichment & Pathway Analysis The current analysis focuses on individual genes. How-
ever, biological processes are oftenmediated by complex interactions amongmultiple genes. Future work could
involve pathway analysis to identify gene sets associated with specific biological functions or processes, such as
those available in KEGG [200] or Reactome [201]. Understanding the underlying biological and molecular
functions of these genes could provide a broader scope for the analysis and potentially reveal novel insights into
our resistance phenomenon.

Modeling Raw SequencingData Currently our methods rely on gene expression counts derived from
aligning reads to a reference genome. An alternative approach involves analyzing the raw RNA sequences di-
rectly using sequence-based deep learningmodels such as the recently released Transformer-based EVO2 [202].
This would allow for the extraction of meaningful embeddings from the genetic sequencing data, potentially
leading to improved predictive performance. Conversely, we might even use the model itself to identify muta-
tions down at the local nucleotide level. This would be the ultimate goal of the work, as it would show the
exact mutations that are causing the resistance, and not just the genes that are differentially expressed.
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Dissemination of Results

Finally, a word on the future dissemination of this work. The results and methodologies developed in this
thesis, and more accurately throughout the entire project, are currently being prepared for publication in two
scientific journal articles. The first manuscript will focus on the pyHaiCS software, highlighting its open-source
contributions to computational statistics andBayesian inferencewithHamiltonian-inspired samplingmethods.
The second manuscript will detail our work on tamoxifen resistance and the identification of potential genetic
biomarkers. This publication will also incorporate additional research that extends beyond the scope of this
thesis, including a novel gene filtering strategy and an optimization method designed to extract robust and
meaningful signatures from high-dimensional genomic data.
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BNN Bayesian Neural Network
BSM Bayesian Statistical Modeling
CV Cross-Validation
DEA Differential Expression Analysis
DML Double Machine Learning
e-MAIA ExtendedModified Adaptive Integration Approach
ER Estrogen Receptor
ESS Effective Sample Size
FC Fold-Change
FDR False Discovery Rate
GD Gradient Descent
GDPR General Data Protection Regulation
GHMC Generalized HamiltonianMonte Carlo
GLM Generalized Linear Model
GMM GaussianMixture Model
GPU Graphics Processing Unit
GSEA Gene Set Enrichment Analysis
GSHMC Generalized ShadowHamiltonianMonte Carlo
HMC HamiltonianMonte Carlo
IACT Integrated Autocorrelation Time
IS Importance Sampling
JIT Just-In-Time
KL Kullback–Leibler
LHNN Latent Hamiltonian Neural Network
LRT Local Reparametrization Trick
MAIA Modified Adaptive Integration Approach
MC Monte Carlo
MCC Matthews Correlation Coefficient
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MCMC Markov-ChainMonte Carlo
MCSE Monte Carlo Standard Error
MDMC Molecular Dynamics Monte Carlo
ML Machine Learning
MLE Maximum Likelihood Estimation
MLP Multi-Layer Perceptron
MMHMC Mix &Match HamiltonianMonte Carlo
MSE Mean-Squared Error
MSSI Multi-Stage Splitting Integrator
NLP Natural Language Processing
NUTS No-U-Turn Sampler
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PINN Physics-Informed Neural Network
PMU Partial MomentumUpdate
PSRF Potential Scale Reduction Factor
pyHaiCS Python in Hamiltonian for Computational Statistics
RBF Radial Basis Function
RFS Relapse-Free Survival
RLE Relative Log Expression
RW-MH Random-WalkMetropolis-Hastings
s-AIA Statistical Adaptive Integration Approach
SA Simulated Annealing
SAE Sparse Autoencoder
SEIR Susceptible-Exposed-Infectious-Remove
SERM Selective Estrogen Receptor Modulator
SGD Stochastic Gradient Descent
SHAP SHapley Additive exPlanations
SMOTE Synthetic Minority Oversampling Technique
SOTA State-of-the-Art
SVC Support-Vector Classifier
TCGA-BRCA The Cancer Genome Atlas Breast Invasive Carcinoma
TP, TN, FP, FN True Positives, True Negatives, False Positives, False Negatives
TPU Tensor Processing Unit
VAE Variational Autoencoder
VI Variational Inference
VV Velocity Verlet
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